Int. J. Dev. Biol. 45: 387 - 396 (2001)
Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm
Published: 1 April 2001
Abstract
Primitive blood cells differentiate from the ventral mesoderm blood islands in Xenopus embryos. In order to determine the tissue interactions that propagate blood formation in early embryogenesis, we used embryos that had the ventral cytoplasm removed. These embryos gastrulated normally, formed a mesodermal layer and lacked axial structures, but displayed a marked enhancement of alpha-globin expression. Early ventral markers, such as msx-1, vent-1 and vent-2 were highly expressed at the gastrula stage, while a dorsal marker, goosecoid, was diminished. Several lines of experimental evidence demonstrate the critical role of animal pole-derived ectoderm in blood cell formation: 1) Mesoderm derived from dorsal blastomeres injected with beta-galactosidase mRNA (as a lineage tracer) expressed alpha-globin when interfaced with an animal pole-derived ectodermal layer; 2) Embryos in which the animal pole tissue had been removed by dissection at the blastula stage failed to express alpha-globin; 3) Exogastrulated embryos that lacked an interaction between the mesodermal and ectodermal layers failed to form blood cells, while muscle cells were observed in these embryos. Using dominant-negative forms of the BMP-4 and ALK-4 receptors, we showed that activin and BMP-4 signaling is necessary for blood cell differentiation in ventral marginal zone explants, while FGF signaling is not essential. In ventralized embryos, inactivation of the BMP-4 signal within a localized area of the ectoderm led to suppression of globin expression in the adjacent mesoderm layer, but inactivation of the activin signal did not have this effect. These observations suggest that mesodermal cells, derived from a default pathway that is induced by the activin signal, need an additional BMP-4-dependent factor from the overlying ectoderm for further differentiation into a blood cell lineage.