The International Journal of Developmental Biology

Int. J. Dev. Biol. 46: 1057 - 1060 (2002)

Vol 46, Issue 8

Cysteine-rich region of X-Serrate-1 is required for activation of Notch signaling in Xenopus primary neurogenesis

Published: 1 December 2002

Tomomi Kiyota and Tsutomu Kinoshita

Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan.

Abstract

The Notch family genes encode single-pass transmembrane proteins which function in a variety of cell fate specifications in invertebrates and vertebrates. In Xenopus primary neurogenesis, the Notch ligands, X-Delta-1 and X-Serrate-1, mediate Notch signaling and regulate cell differentiation. In the present study, we examined the role of the Serrate-specific cysteine-rich (CR) region in the primary neurogenesis of Xenopus embryos. The ligand constructs containing the DSL (Delta/Serrate/Lag-2) domain in the extracellular region caused a reduction in primary neurons, whereas the DSL-deleted form of X-Delta-1 resulted in the overproduction of primary neurons. However, the DSL-deleted form of X-Serrate-1 or the construct containing only the CR region in the extracellular domain (SerCR) reduced the number of primary neurons. In contrast, the CR-deleted form of X-Serrate-1 (SerACR) lost activity as a Notch ligand, regardless of the presence of the DSL domain within the extracellular domain. Overexpression of X-Delta-1 and X-Serrate-1 strongly induced the expression of Xenopus ESR-1 (XESR-1), a gene related to Drosophila Enhancer of split. SerCR alone also moderately induced the expression of XESR-1, but the SerACR form did not induce this expression. Co-injection of X-Notch-1deltaICD, which deletes the intracellular domain (ICD), with SerCR suppressed a neurogenic phenotype, although co-injection of X-Su(H)1DBM with SerCR did not, indicating that SerCR affects primary neurogenesis through the Notch/Su(H) pathway. These results suggestthatthe CR region of Xenopus Serrate is required for the activation of Notch signaling and cell fate specification in primary neurogenesis.

Full text in web format is not available for this article. Please download the PDF version.