Supplementary Material

corresponding to:

The stem cell transcription factor ZFP296 transforms NIH3T3 cells and promotes anchorage-independent growth of cancer cells

YUMI MIZOUE, TOMOMI IKEDA¹, TAKAKO IKEGAMI, OLEKSANDRA RIABETS, YOSHIE OISHI, MORIKUNI TOBITA, HIDENORI AKUTSU, KOICHI HATTORI, BEATE HEISSIG, HIROSHI KOIDE

Supplemental Information

"The stem cell transcription factor ZFP296 transforms NIH3T3 cells and promotes anchorage-independent growth of cancer cells." by Mizoue, Y. et al.

Materials and methods

Cell culture

TIG-114 cells were obtained from JCRB. HeLa, HepG2 and TIG-114 cells were cultured in DMEM containing 10% FBS. hTERT-HME1 were from ATCC and cultured in mammary epithelial cell basal medium MEBM (Lonza). AGS cells were from European Collection of Cell Cultures and cultured in F-12 medium (Life Technologies) containing $10 \% \mathrm{FBS}$ and 2 mM glutamine. Human umbilical vein endothelial cells (HUVECs) and human dermal lymphatic endothelial cells (HDLECs) were purchased from PromoCell (Heidelberg, Germany) and Takara, respectively, and cultured in endothelial cell growth medium 2 (PromoCell) and endothelial cell growth medium MV2 (PromoCell), respectively. BMEC1, hFOB and U266 cells were cultured in M199 medium (Life Technologies) containing 20\% FBS, DMEM/Ham's F12 (FUJIFILM Wako Chemicals) containing 10\% FBS, and RPMI1640 (Nacalai Tesque) containing 15% FBS, respectively. All cells were cultured in a humidified atmosphere with $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$.

Table S1 Primer sets for qPCR

Gene	Forward primer (5' to 3')	Reverse primer (5' to 3')
mouse β-actin	TCCTTCTTGGGTATGGAATCCTG	GAGGTCTTTACGGATGTCAACG
mouse Zfp296	AGCTTCTCCAAGTCTCCGACC	GTGGCACAGCAACTTCCAAGG
human β-actin	AGCACAGAGCCTCGCCTTT	CGCGGCGATATCATCATCCA
human ZFP296	CTGGACCGACAAACACCCAG	GTGAACTGTTTGCCACAGCG

Fig. S1 Western blot analysis
(A) Confirmation of mouse ZFP296 overexpression in NIH3T3 cells.
(B) Confirmation of mouse ZFP296 overexpression in C2C12 cells.

Representative data from multiple experiments are shown. The numbers below the gel indicate the expression level of ZFP296, relative to control cells, which was calculated by dividing the density of ZFP296 bands by that of β-tubulin bands, followed by setting the value of control cells as 1 .

Fig. S1 Western blot analysis
(C) Confirmation of human ZFP296 overexpression in HT1080 cells.
(D) Confirmation of human ZFP296 overexpression in HCT116 cells.

Representative data from multiple experiments are shown. The numbers below the gel indicate the expression level of ZFP296, relative to control cells.

E

$1.00 \quad 0.18 \quad 0.18$

Fig. S1 Western blot analysis
(E) Confirmation of ZFP296 knockdown in MCF7 cells.

Representative data from multiple experiments are shown. The numbers below the gel indicate the expression level of ZFP296, relative to control cells.

Fig. S2 Expression of ZFP296 in several human tumors (red box) and normal tissues (grey box).

Data from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) were analyzed by using GEPIA2. The abbreviations for each cancer in the figure are as follows.

ACC Adrenocortical carcinoma
BLCA Bladder urothelial carcinoma
BRCA Breast invasive carcinoma
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL Cholangiocarcinoma
COAD Colon adenocarcinoma
DLBC Lymphoid neoplasm diffuse large B-cell lymphoma
ESCA Esophageal carcinoma
GBM Glioblastoma multiforme
HNSC Head and Neck squamous cell carcinoma
KICH Kidney chromophobe
KIRC Kidney renal clear cell carcinoma
KIRP Kidney renal papillary cell carcinoma
LAML Acute myeloid leukemia
LGG Brain lower grade glioma
LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma
LUSC Lung squamous cell carcinoma
MESO Mesothelioma
OV Ovarian serous cystadenocarcinoma
PAAD Pancreatic adenocarcinoma
PCPG Pheochromocytoma and paraganglioma
PRAD Prostate adenocarcinoma
READ Rectum adenocarcinoma
SARC Sarcoma
SKCM Skin cutaneous melanoma
STAD Stomach adenocarcinoma
TGCT Testicular germ cell tumors
THCA Thyroid carcinoma
THYMThymoma
UCEC Uterine corpus endometrial carcinoma
UCS Uterine carcinosarcoma
UVM Uveal melanoma

