doi: 10.1387/ijdb.170327ss

SUPPLEMENTARY MATERIAL

corresponding to:

Deletion of etoposide-induced 2.4 kb transcript (ei24) reduced cell proliferation and aggregate-size in *Dictyostelium discoideum*

NEHA GUPTA and SHWETA SARAN

^{*}Address correspondence to: Shweta Saran. School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India. Tel: (O) +91-11-26704157. E-mail: ssaran@mail.jnu.ac.in; shweta_saran@hotmail.com - 10 http://orcid.org/0000-0022-0238-498X

Full text for this paper is available at: http://dx.doi.org/10.1387/ijdb.170327ss

Dd_EI24	1
Dd_EI24 At_EI24 Ce_EPG4 Hs_EI24 Dm_TANK	, MVKFQIIARDFYHGFIDSFKGITFVRRIREBEAKEVKV
Dd_EI24 Dd_EI24 At_EI24 Ce_EPG4 Hs_EI24 Dm_TANK	η1α1α2202030TTTT2020102030TTTT506070ETFKEYVTKRIDNTIPQVKEMFKLIWL.GVADSMKLKGAIIRTIKSEVLRKNFIHCIFLINGLIFLGTYLI
Dd_EI24 Dd_EI24 At_EI24 Ce_EPG4 Hs_EI24 Dm_TANK	η2 α3α4 α5α600000000000000000000000000000000000
Dd_EI24 Dd_EI24 At_EI24 Ce_EPG4 Hs_EI24 Dm_TANK	0000000 140 150 160 140 150 160 SFVISGRTTFAN. STNDEIXSFVDEIYRNLLFGVILVMSAIIAF. IPY GFEALESISDLNSAEALRQGEALASLNMANAERPSGLGGVMIGIGEQVYSILLLTFFFLEVCVVG VIPY CMRALKL. PPPPVVPFSSMLAGTLISALHQIFFLIQGMLSQVLPIPL AFEVSGR
Dd_EI24 Dd_EI24 At_EI24 Ce_EPG4 Hs_EI24 Dm_TANK	a8a9a10a1120170180190200210220180190200210220230IGKILNPLLLSWMYAYYCYBYKMILRGKWNLLQRIQYFETHWAYMFGYGLTFTTCSFF.FPMLTGNATFSIGKILNPLLLSWMYAYYCYBYKMINFSG.ISLKKRLDFFQSNWAFFAGFGSPCVLAIFF.LSPLVSGALMAITPVIVYLHMALLNSMYCPDYFFDGYN.LSFLRRKDIFESHWPYFLGFGTPLALACSISSNMFVNSVIFAVGQUYSLHMALLYSLYSFYRWFNG.IEMHQRLSNIERNWPYFFGFGIPLAFLTANQSSVIJSGCLFSVGSSLCFVHLCLLYSLYSFFYKWFNMG.WELHRRLTYIEKNWPYFFGFGIPLAVLTNLSSSVIVSSCIFS
Dd_EI24 Dd_EI24 At_EI24 Ce_EPG4 Hs_EI24 Dm_TANK	240250260270280290300ILYPLFILSISAKPTKMVNQDGILPKDIPIFYVPEIIVNVILKLYVKKNTR.GAAKS.TTPSFSETILFPLFVLTATGSGPEKLIGA.PRRTWKCAGLGKLPIFYIADTLSMLALSIFRLESPHENLLFPFFIITSYPANWNRKYEEIPKIAFCRISYMFTELVGKFV.KSITPTNNFTILFPLFIISANEAKTPGKAYL.FQLRLFSLVVFLSNRLFHKTV.YLQSALSSSTSAEKFPSPHPSP.IFFPLFILSGNEAKPIVDTTE.VSLRLFSPVVFISNLCFGGNP.WSKANRLSAMQRQQYELQQRQRL
Dd_EI24 Dd_EI24 At_EI24 Ce_EPG4 Hs_EI24 Dm_TANK	TKQI AARNNAQN. AALKA. LQRDEQLLKQRKQQYVQQQRLQQEQLMRRDRSHSRSQTPQLGHPHRYAQAPVFDAGRVRDSSASSTHSSN

Supplementary Fig. S1. CLUSTALX alignment of the DdEl24 with other organisms. Conserved amino acids are marked with a red box. Peptide sequence of DdEl24 was analyzed using the PSORT II program to detect the potential topology motifs. ER membrane retention signals (KKXX-like motif) are represented in a pink box (TTKQ) and a possible vacuolar targeting motif is represented in a blue box (ILPK). Abbreviations: At, Arabidopsis thaliana; Ce, Caenorhabditis elegans; Dd, Dictyostelium discoideum; Dm, Drosophila melanogaster; Hs, Homo sapiens.

Supplementary Fig. S2. Characterization of the *ei24* mutants. (A) Schematic representation of overexpressing construct of ei24 (ei24OE) and p53 (p53OE). Both the constructs were prepared with eYFP reporter gene construct at its C-terminal and were driven under actin15 promoter. (B) Schematic representation of the knockout construct of ei24. The primers and the expected amplicon sizes are marked. (C) Validation of knockout strain by PCR amplifications. The primer pair used and the size of the amplicon are as: Lane 1= #1 and 4; size=1.63 kb; Lane 2= #5 and 8; size=1.2 kb; Lane 3= #2 and 3; size=0.58 kb; Lane 4= #6 and 7; size=0.61 kb; Lane 5= #2 and 4; size=1.55 kb; Lane 6= #5 and 7; size=1.1 kb; Lane 7= # 1 and 3; size=0.68 kb; Lane 8= # 6 and 8; size=0.71 kb. In Ax2 strain lanes 3, 4, 7 and 8 are positive, In ei24⁻ all lanes 1-8 are positive for the amplified DNA fragment (M denotes the 1 Kb plus DNA ladder from Fermentas, KF1-knockout fragment 1; KF2-knockout fragment 2).

Supplementary Fig. S3. Pearson's correlation analysis. ei24-eYFP cells were merged with ER tracker red for colocalization analysis. Different ROI were selected from ~50 cells and Pearson's correlation coefficient was calculated.

Supplementary Fig. S4. *ei24* null mutant altered the mRNA expression of *Dictyostelium* cell-type-specific genes. *RT-PCR* analyses of specific genes (A) ecmA, (B) ecmB and (C) d19 (pspA) during developmental stages of Ax2 and ei24 -after normalization to ig7 are shown. [Veg- vegetative; LA-loose aggregate; EC-early culminant; FB-fruiting body; n=3; Student t-test, p-value ≤ 0.05 , ≤ 0.01 and ≤ 0.001 has been represented as *, ** and ***, respectively].

Supplementary Fig. S5. Comparative time dependent effect of etoposide treatment on cell viability. Cell viability in Ax2, ei24^{oE} and ei24⁻ cells using MTT assay.

SUPPLEMENTARY TABLE S1

LIST OF PRIMERS USED IN THIS STUDY

S. No	Oligo Name	5'-3' Sequence (Forward Primer)	5'-3' Sequence (Reverse Primer)
1	ei24 ^{0E}	CCAAGGATCCGAGACATTTAAAGAATATG	AACCCTCGAGAATTTTGTTTGTAGTTGGT
2	ei24 RT	TTCCAAATGGTATACAGAGA	AATGCCATCTTGATTAACC
3	р53 ^{0Е}	CCAAGGATCCTCAAAAGAAAAAACATCTTGGGGT	AACCCTCGAGAACCACTTGTATGATTACATGGAAC
4	<i>p53</i> RT	TCGATCCATCATTTGCATGTT	ACCACTTGTATGATTACATGG
5	ei24 in situ	TTGGCTCGAGTCATTATGGGTTTATCCAGTT	GGTTAAGCTTTCGAAACACCAAAATGAATA
6	<i>ei24</i> ⁻ KF1	TTCCGGATCCGAGACATTTAAAGAATATGTA	AAGGAAGCTTAGACATTACCAAAATTACACC
7	<i>ei24</i> ⁻ KF2	GAAGTCTAGAGCAATCATTGCATTCATTCCA	TGTGCGGCCGCATTTTGTTTGTAGTTGGTGA
8	Bsr	TTTGTCCATTCGAAACTGCA	TGCAGTTTCGAATGGACAAA
9	ei24 ⁻	AACAACACAAAAAAGGAAAT	ATGATCGTTACAAGTGAAAATATG
10	<i>ig7</i> RT	TGAATTGAAGTCTGAGTAAACGG	TAGATAGGGACCAAACTGTCTCAC
11	acaA RT	AGTACACCACATAATAATAATCAT	CTCTGGAATTACAATATCTCTCTT
12	carA-1 RT	TGTATGGCAGTGTTGATTGGT	ATGGTGATGGATTGTTATTGT
13	pdsA RT	ATGGCATTAAATAAAAAATT	TTAAATACAAATTGGATCACC
14	gbfA RT	CCATTACCATTACCATCTATA	TGATGGTGATGGTGTATTACT
15	cadA RT	TCTGTTGATGCAAATAAAGTAAAA	ATAGTCATATGGTGTATGTGTTTG
16	csaA RT	GTGAACGACTCTATTAACTCTGCT	AGTTGGAGTGTCTGGAATTGTATA
17	ctnA RT	ATTTTAGCTTTATTCCTTGTCAAC	GTGTAAGCAATTGAGAGGGTGAAT
18	cotA RT	TAATAAGCTTGAAAGATAATTGTGGAGAAGGTGGTGATG	TTATCTCGAGGGAAGAGCTTGATGATGCAGATGAAG
19	cotB RT	GGTCAAGCTTAGAGATAGTAACGATTGTCTTGCTAG	TTACCTCGAGATAGTTGATGGATTGATACAGATTGG
20	rad51 RT	TGTCATACATTATGTGTA	TTGTTCTTTATAATCGG
21	rad52 RT	CAAGAGGATGTTGGTTAT	TTGGAATTGAGGGATGGC
22	rad54 RT	AGAAGTTTAGCACCAAGT	TTTGGAAAGACGTACTGC
23	<i>ku70</i> RT	GATGGTGATGATTGGGAT	CAGAGAATTTGGAACTTG
24	<i>ku80</i> RT	ATGACAACTACAATACCA	ACGAGTCATTACTGATTG
25	dnapkcs RT	GAGATGACACAACTGTTT	ACTTGTTCAATATGATCT

See Supplementary Videos V1-V3 at https://dx.doi.org/ 10.1387/ijdb.170327ss

Supplementary Videos V1-V3 showing cell-migration in response to the cAMP gradient (5 µl, 100 µM). (V1) Ax2; (V2) ei24° and (V3) ei24° cells.