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ABSTRACT	 The digestive tract is a series of organs with specific functions and specialized anatomy. 
Each organ is organized similarly with concentric layers of epithelial, connective, smooth muscle, and 
neural tissues. Interstitial cells of Cajal (ICC) are distributed in smooth muscle layers and contribute to 
the organization of repetitive and rhythmic smooth muscle contractions. Understanding ICC development 
is critical to understanding gastrointestinal motility patterns. Experiments determining ICC origin and 
development in mice, chicken, and humans are described, as well as what is known in the zebrafish. At 
least six types of ICC in the digestive tract have been described and ICC heterogeneity in adult tissues is 
reviewed. Factors required for ICC development and for maintenance of ICC subclasses are described. 
This review is suitable for those new to ICC development and physiology, especially those focused on 
using zebrafish and other model systems.
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Introduction

The smooth muscle layers of the digestive tract are complex and 
composed of many cell types, including muscle cells, nerve cells, 
mast cells, macrophage, fibroblasts, PDGFα cells and interstitial 
cells of Cajal (ICC), each with their own origin, development, and 
function. Development of the vertebrate digestive tract is generally 
conserved across species. Here we give an overview, highlighting 
distinctions between amniotes (such as humans, mice, and chicks) 
and anamniotes (such as zebrafish) as necessary for interpreting 
experiments. We also refer readers to an excellent description of 
the development of the zebrafish digestive tract in a recent review 
considering zebrafish as a model organism to study gut microbe 
interactions (Flores et al., 2020). This article reviews the current 
understanding of the origin and development of ICC and evaluates 
the potential for future examination in zebrafish. 

Initial and early digestive tract development

The digestive tract is derived from two primitive layers, the 
endoderm (which gives rise to the epithelium) and the mesoderm 
(which develops into the mesenchyme, smooth muscle layers, and 
numerous other cell types). Initial development of the digestive 
tract follows this basic sequence of events: gastrulation, forma-
tion of the primitive gut from the endoderm and positioning of the 
inner leaflet of the lateral plate mesoderm (splanchnic) against 
the endoderm (d3 in chick; E9.5 in mouse; week 4 in humans; 
and 34-52 hours post fertilization (hpf) in zebrafish) (Bardot and 

Hadjantonakis, 2020; Hamburger and Hamilton, 1992; Huycke and 
Tabin, 2018; Kimmel et al., 1995; Spence et al., 2011; Tyser et al., 
2021; Wallace et al., 2005; Walton et al., 2016). Rapid growth and 
folding of the embryo cause the inner leaflet of the lateral plate 
mesoderm to encircle the gut and become the visceral mesoderm 
(Chin et al., 2017; McLin et al., 2009; Prummel et al., 2019; Prummel 
et al., 2020). The endoderm and visceral mesoderm subsequently 
undergo a period of rapid growth, characterized by increased intes-
tinal length, circumference, and luminal area (from d5-d8 in chick; 
from E9.5-E13.5 in mice; approximately 3-7 weeks in humans; from 
34-76 hpf in zebrafish) (Cervantes et al., 2009; Chin et al., 2017; 
Huycke and Tabin, 2018; Lepourcelet et al., 2005; Polak-Charcon 
et al., 1980; Spence et al., 2011; Wallace et al., 2005).

During early development the mesenchyme of the gut tube 
begins to differentiate into multiple layers of orthogonally oriented 
smooth muscle (beginning at d6 in chick; E11 in mice; week 5 in 
humans; 50 hpf in zebrafish) (Chevalier et al., 2021b; Chin et al., 
2017; Fu et al., 2004; Gabella, 2002; Huycke et al., 2019; McHugh, 
1995; McKeown et al., 2001; McLin et al., 2009; Seiler et al., 2010; 
Shyer et al., 2013; Wallace and Burns, 2005; Wallace et al., 2005) 

https://doi.org/10.1387/ijdb.240057ar
www.intjdevbiol.com
mailto:arich@brockport.edu
https://orcid.org/0000


94    T. Sweet et al.

In amniotes, these layers include the muscularis propria and the 
muscularis mucosae. The muscularis propria is located medially 
between the submucosa and serosa and functions primarily in 
gastrointestinal mixing and peristalsis. It is divided into two dis-
tinct layers, an inner circular layer and an outer longitudinal layer. 
In humans, the stomach contains a third, middle oblique smooth 
muscle layer. The muscularis mucosae is located closest to the 
lumen, between the submucosa and lamina propria and functions 
to move the mucosa, which is important in both gastrointestinal 
mixing and absorption (McHugh, 1995; McHugh, 1996). In anamni-
otes, the intestinal architecture of smooth muscle is less complex 
and the muscularis mucosae is absent (Wallace and Pack, 2003).

Concurrent with muscle development neural crest cells migrating 
from the dorsal CNS populate the developing intestine (beginning 
at d2.5 in chick; E9.5 in mice; 4 weeks in human; 32 hpf in zebraf-
ish (Nagy and Goldstein, 2017; Wallace and Pack, 2003; Young 
et al., 1999). These cells give rise to the enteric nervous system 
(Espinosa-Medina et al., 2017). This population of cells actively 
migrates ventrally to the most anterior region of the developing 
gut tube first followed by rostral to caudal development along 
the foregut tube in response to signals from the surrounding 
mesenchyme (Taraviras and Pachnis, 1999; Young et al., 1999). 
A second population of neural crest cells migrate from the sacral 
region to seed the distal part of the enteric nervous system in the 
digestive tract of amniotes (Burns and Douarin, 1998; Gershon et 
al., 1993; Orts Llorca, 1934; Shepherd and Eisen, 2011; Wallace and 
Burns, 2005; Wang et al., 2011). This differs in zebrafish where the 
enteric nervous system is derived entirely from the vagal neural 
crest (Dutton et al., 2001; Kelsh and Eisen, 2000; Rocha et al., 2020; 
Sasselli et al., 2012). 

During this period, neural crest cells, mesenchyme, and epi-
thelium communicate with each other in a temporally dynamic 
manner to regulate regional identity, differentiation of progenitors 
into specific cell types, and morphogenesis of the future intesti-
nal tract (Le Guen et al., 2015; Roberts et al., 1998). While these 
interactions have been the subject of scrutiny for decades, there 
is a growing appreciation for the molecular mechanisms involved 
(Chevalier et al., 2021b; Huycke et al., 2019; Pawolski and Schmidt, 
2020; Prummel et al., 2019; Prummel et al., 2020; Sukegawa et al., 
2000; Uesaka et al., 2013).

Both mouse and human intestines are functional at birth but 
undergo rapid growth and maturation postnatally. This includes 
the establishment of the intestinal stem cell niche, colonization 
by microbiota, and maturation of various epithelial cell types. In 
contrast, the intestine of zebrafish larvae intestine is not considered 
functional until the fifth day of embryogenesis, with additional 
growth and maturation that occurs during the next 4 weeks (to 33 
dpf) that increases both the size and looping that is characteristic 
of the adult tract (Li et al., 2020) 

Interstitial cells of Cajal

Any of the cell types that lies within or between the smooth 
muscle layers of the gut could be called interstitial cells, but only 
one type takes the namesake of Ramon y Cajal. Ramon y Cajal 
was a Spanish neuroscientist and an artist in the late 19th and 
early 20th century. He produced detailed neuroanatomical drawings 
which included the neural networks of the brain and the digestive 
tract. Cajal was an expert with the Golgi method, a silver staining 

technique that enabled him to visualize cell morphology (Cajal, 
1909). The Golgi method highlighted a cell population between 
the enteric nervous system and the bulk smooth muscles cells in 
the rabbit small intestine and Cajal named them ICC (Keith, 1915).

ICC are found between and within the smooth muscle layers 
of the digestive tract from the esophagus to the inner sphincter 
region of the anus in humans and mice and from the stomach to 
the cloaca in chick (Faussone-Pellegrini and Cortesini, 1985; Hag-
ger et al., 1998; Torihashi et al., 1999a; Yun et al., 2010) (Chevalier 
et al., 2020). ICC have a small cell body and can be either bipolar 
or multipolar with several long processes often branching out into 
secondary and tertiary extensions (Hanani et al., 2005). The cells 
sometimes form networks, and at the ultrastructural level contain 
numerous mitochondria (Faussone-Pellegrini, 1985; Faussone Pel-
legrini, 1984; Komuro, 2006), and are coupled by gap junctions to 
other ICC and smooth muscle cells (Ball et al., 2012; Christensen, 
1992; Komuro, 2006). The distribution of ICC along the digestive tract 
of zebrafish has not been fully described though they are reported 
throughout the mid intestine. Two layers of ICC were identified; one 
with multipolar cells located between the longitudinal and circular 
smooth muscle layers, and one with simple bipolar cells located 
deep in the circular muscle layer (Rich et al., 2007).

ICC are electrically active cells that produce and propagate 
the electrical slow wave along the digestive tract. This electrical 
wave is conducted to adjacent smooth muscle cells to coordinate 
phasic contraction and peristalsis of the gut. (Faussone Pellegrini 
et al., 1977; Huizinga et al., 1995; Langton et al., 1989; Ördög et al., 
1999; Rumessen et al., 1982; Thuneberg, 1982; Ward et al., 1994). In 
addition to their pacemaker function, ICC transduce inhibitory and 
excitatory motor neuron input from the enteric nervous system to 
smooth muscle cells of the gut, thereby playing a fundamental role 
in the process by which the nervous system regulates gut motility 
(Burns et al., 1996; Hirst et al., 2002; McErlain et al., 2018; Sung 
et al., 2018; Ward et al., 2000). The physiological roles of ICC are 
critical to a proper functioning gut and dysfunction or loss of ICC 
contribute to a broad range of disorders, including diabetic and 
idiopathic gastroparesis (Faussone-Pellegrini et al., 2012; Grover et 
al., 2011; Ördög, 2008), intestinal pseudo-obstructions (De Giorgio 
et al., 2004), Hirschsprung disease (Chen et al., 2014), inflamma-
tory bowel diseases (Porcher et al., 2002; Rumessen et al., 2011), 
slow transit constipation (He et al., 2000; Lyford et al., 2002) and 
others (Sanders et al., 2002; Vanderwinden and Rumessen, 1999).

The origin of ICC

ICC originate from mesodermal mesenchyme, though this notion 
was controversial for nearly a century. ICC are difficult to identify 
because they share morphologic characteristics with neurons, glia, 
smooth muscle cells, and fibroblasts and therefore comparative 
studies generated conflicting conclusions. These initial studies, 
nicely summarized by Huizinga et al., were hampered by lack of a 
marker to definitively identify ICC (Huizinga et al., 2013). 

The field advanced when it was recognized that ICC express KIT 
which functionally contributes to ICC development, differentiation, 
and survival (Chabot et al., 1988; Geissler et al., 1988; Huizinga et 
al., 1995). KIT is a tyrosine kinase receptor, encoded by the KIT 
gene. KIT is expressed on various cell types in addition to ICC, 
including mast cells, hematopoietic progenitors, melanocyte 
progenitors, and differentiated melanocytes (Lennartsson and 
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Ronnstrand, 2012). KIT is activated by its ligand, stem cell factor 
(SCF), also known as steel factor. SCF is expressed by enteric 
neurons and to a lesser extent, smooth muscle (Horváth et al., 
2006; Lecoin et al., 1996; Torihashi et al., 1996; Yamataka et al., 
1995). Interaction of SCF with the KIT receptor triggers production 
of signaling molecules that promote cellular functions includ-
ing growth, migration, and differentiation (Rottapel et al., 1991). 
SCF is produced in two forms, one secreted and one membrane 
bound. Each form is likely to have different actions or potency at 
the receptor (Lennartsson and Ronnstrand, 2012).

With the recognition that ICC express KIT, Lecoin et al., (1996) 
addressed the controversy of ICC’s origin with interspecies chi-
meras (Lecoin et al., 1996). The major hypothesis tested through 
experimentation was whether KIT positive cells were of neural 
crest origin. They grafted quail vagal neural crest into chick em-
bryos. In the resulting chimera, enteric innervation was of quail 
origin. ICC were identified by a chicken-KIT nucleic acid probe that 
cross-reacted with the quail KIT gene product. LeCoin reported 
that in situ hybridization of chimeric bowels showed that all KIT-
positive cells were chick and not quail derived, and concluded 
they were not of neural origin (Lecoin et al., 1996). Chick cells 
can be distinguished from quail cells using Feulgen staining or an 
antibody against a perinuclear antigen, QCPN (for Quail non-Chick 
Peri-Nuclear), though it is unclear to us which method was used 
to distinguish quail cells from chick cells in these experiments. 
The conclusion was supported by additional experiments culturing 
aneural chick guts on a chorioallantois membrane of quail. Typical 
ICC, as defined both at the EM level and by their expression of 
KIT receptor developed in the gut wall in the complete absence 
of enteric innervation (Lecoin et al., 1996). 

Evidence supporting a mesenchymal origin for ICC in the mu-
rine gastrointestinal (GI) tract was also presented by Young et al., 
in the same year (Young et al., 1996). Using antibodies specific 
for ICC or neurons they showed that ICC developed in intestinal 
transplants taken before the arrival of neural crest cells. Identical 
experiments using transplants taken later during development 
after arrival of neural crest cells contained both ICC and neurons.

Work from both groups is consistent with a non-neural origin of 
KIT positive cells early in development, leaving many to conclude 
that ICC originate solely from the mesodermal mesenchyme (Le-
coin et al., 1996; Young et al., 1996). More recent work has shown 
a second source for gut mesenchymal tissue, the GI coelomic 
epithelium, which arises from an epithelial-mesenchymal transition 
that occurs early in development in the mouse (Carmona et al., 
2013). A subset of the Wt1 lineage of cells, representing coelomic 
origin, go onto express KIT and anoctamin 1 (ANO1), another 
marker of ICC (Gomez-Pinilla et al., 2009). Yet another source 
for ICC are cells originating in the ventral part of the hindbrain 
that contribute to visceral organogenesis. This cell population 
has been named ventrally emigrating neural tube (VENT) cells 
(Dickinson et al., 2004). VENT cells are multipotent, giving rise to 
neurons, glial cells, ICC, and epithelial cells in the chick stomach 
and duodenum (Sohal et al., 2002). In summary, ICC primarily 
derive from mesodermal mesenchyme, but other sources such 
as coelomic and VENT cells are likely to contribute slightly later 
during development to the ICC population. Whether a differential 
origin creates distinct progenitor populations and/or contributes 
to morphological or functional differences amongst ICC has not 
been reported. 

Differentiation of ICC - the early embryonic period 

In the developing digestive tract, KIT positive cells first emerge 
outside of the differentiating circular muscular layer (beginning 
at d7 in chick; E12 in mice and week 7-9 in humans (Faussone-
Pellegrini et al., 2007; Iino et al., 2020; Kenny et al., 1999; Keshet 
et al., 1991; Klüppel et al., 1998; Lecoin et al., 1996; Radenkovic, 
2012; Radenkovic et al., 2010b; Torihashi et al., 1997; Wallace 
and Burns, 2005; Wester et al., 1999; Wu et al., 2000). KIT posi-
tive cells emerging during the early embryonic period are more 
abundant, more widely distributed, and morphologically different 
from mature ICC (Klüppel et al., 1998; Radenkovic, 2012, Raden-
kovic et al., 2010a; Radenkovic et al., 2010b; Roberts et al., 2010; 
Torihashi et al., 1997). The putative ICC progenitor cells appear 
with a small cell body, large nucleus, and numerous but short 
cellular processes (Radenkovic et al., 2018). Later experiments 
revealed that these cells, in addition to expressing KIT, may also 
express Ano1, PDGFα and PDGFβ (Chevalier et al., 2020; Huang 
et al., 2009; Kurahashi et al., 2008). Ano1 is a calcium-activated 
chloride channel considered to be critical for mature ICC function 
(Gomez-Pinilla et al., 2009) (Huang et al., 2009), while PDGFα and 
PDGFβ are growth factor receptors, implicated in fibroblast and 
smooth muscle development (Chen et al., 2013) and neural crest 
migration (Shellard and Mayor, 2016). 

Distribution of KIT positive progenitors is broader when 
compared with distribution of mature ICC (Klüppel et al., 1998; 
Radenkovic, 2012, Radenkovic et al., 2010a; Roberts et al., 2010). 
Whether their distribution arises through de novo differentiation 
of mesenchymal cells or expansion of preexisting progenitor 
population is not known. Single-cell analysis of digestive organs 
during embryogenesis identified multiple conserved and transcrip-
tionally distinct mesenchymal cell populations which support 
the possibility of an ICC specified mesenchymal cell population 
(Loe et al., 2021). Single cell RNA analysis focusing on embryonic 
ICC progenitors, such as have been done in adults (Wright et al., 
2021), has the potential to bring a better understanding of the 
cells that give rise to KIT positive progenitors and the signals 
influencing their emergence. 

Given that embryonic progenitor cells express KIT, it is a 
natural question whether ICC maintenance, differentiation, or 
both rely on KIT signaling. Mice with defects in KIT signaling 
have normal ICC networks at birth, which suggests that KIT 
signaling is not required for lineage determination of ICC during 
early embryogenesis (Klüppel et al., 1998; Thuneberg, 1990). This 
was shown using W banded (Wbd) mice which have a genomic 
rearrangement of chromosome 5 resulting in inversion of KIT 
and a loss of KIT expression during embryogenesis (Thuneberg, 
1990). At postnatal day 5 KIT expression was absent but appar-
ently normal ICC distributions were observed using methylene 
blue staining (Thuneberg, 1990). Methylene blue staining is not 
specific to ICC. In a different set of experiments, Bernex and co-
workers inserted a lacZ gene into the first exon of KIT, creating 
a null allele, WlacZ. LacZ transgene expression overlapped Kit 
expression in heterozygous WlacZ/+ embryos in the colon of E16.5 
animals (Bernex et al., 1996). The pattern of LacZ expression 
LacZ was the same in WacZ/+ and W lacZ/lacZ embryos (Bernex et al., 
1996), but ICC distributions were not assessed independently from 
LacZ. Now that additional markers of ICC are available, it would 
be interesting to revisit the question of whether KIT signaling is 
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required during early embryogenesis following ICC progenitors 
by Ano1 immunoreactivity (Chevalier et al., 2020; Huang et al., 
2009; Kurahashi et al., 2008).

Differentiation of ICC – late embryonic period after 15 days

During the late embryonic period, the number of KIT positive 
progenitor cells declines, and some cells begin to express smooth 
muscle markers. For example, in the colon some cells are immu-
noreactive for γ-enteric actin (Torihashi et al., 1999a), an actin 
isoform associated with smooth muscle, and cells in the small 
intestine are immunoreactive for vimentin or desmin, markers of 
immature smooth muscle (Bornemann and Schmalbruch, 1993; 
Torihashi et al., 1997; Ward and Sanders, 2001). The longitudinal 
layer of smooth muscle appears (Klüppel et al., 1998; Radenkovic, 
2012; Torihashi et al., 1997) by d13 in the chick (Graham et al., 
2017; Shyer et al., 2013), E16.5 in the mouse (Chevalier et al., 
2021a), week 11 in humans (Wallace and Burns, 2005), and 80-98 
hpf zebrafish (Olden et al., 2008; Seiler et al., 2010). Many of the 
remaining KIT positive cells in the myenteric plexus region and in 
the muscular layers take on a distinct morphology and distribution 
characteristic of mature ICC. (Abramovic et al., 2014; Iino et al., 
2020; Radenkovic, 2012, Radenkovic et al., 2010a; Radenkovic et 
al., 2010b; Torihashi et al., 1997; Ward et al., 1997). They extend 
multiple fine processes and form mature networks indistinguish-
able in appearance from those in adults, and the electrical slow 
wave becomes detectable (Roberts et al., 2010; Torihashi et al., 
1997; Ward et al., 1997). The slow wave is a repeating depolarizing 
and repolarizing oscillation of membrane potential. It’s not an ac-
tion potential and it functional organizes phasic contractions in GI 
muscles (Sanders, 2019) The slow wave is initiated in ICC and is 
transmitted to smooth muscle, where it is typically measured. In 
mice the slow wave emerges in the stomach and proximal small 
intestine before birth (by E19), soon after birth in the ileum, and 
after several days in the colon and subsequently the amplitude 
and frequency increases (Ward et al., 1997).

Although ICC lineage determination during early embryogen-
esis is KIT independent (Klüppel et al., 1998; Thuneberg, 1990; 
Bernex et al., 1996)), during late embryogenesis, KIT signaling 
is crucial for normal ICC development. At postnatal day 15, Wbd/
Wbd mice showed a marked reduction in methylene blue positive 
cell density, indicating that KIT function is necessary for expan-
sion or specification of ICC during this time period(Klüppel et al., 
1998). Additionally, treatment with neutralizing kit antibodies, in 
organotypic culture from murine gut and in newborn animals, 
has reduced ICC number, disrupted ICC networks and slow wave, 
rendered muscles electrically quiescent, and altered gut motility 
and contractility (Torihashi et al., 1995; Sato et al., 1996; Ward et 
al., 1997; Torihashi et al., 1999b; Maeda et al., 1992; Beckett et 
al., 2007). 

ICC heterogeneity

Mature ICC are a heterogenous population with subclasses 
based upon distribution, cell morphology, connectivity, and func-
tion (Hanani et al., 2005; Huizinga et al., 2011; Koh et al., 1998; 
Parsons and Huizinga, 2020; Sanders et al., 2006; Thomsen et 
al., 1998; Yang et al., 2012). The molecular factors influencing 
development or identification of ICC subtypes are not established. 

The most prominent and best studied ICC are located between 
the circular and longitudinal muscles layers, referred to as myen-
teric ICC (ICC-MY), that form a network surrounding the neuronal 
myenteric plexus (Komuro, 2006; Sanders et al., 1999). ICC-MY 
are observed in every organ of the GI tract, from the esophagus to 
the colon. A second ICC network is observed in the deep muscu-
lar plexus region of the small intestine, located in the innermost 
layer of circular smooth muscle (ICC-DMP) (Sanders et al., 1999). 
Single ICC are distributed throughout the circular smooth muscle 
layer and therefore are termed intramuscular (ICC-IM). Finally, a 
more dense population of un-connected ICC are observed close 
to the submucosal border of the colon (ICC-SM) (Gomez-Pinilla 
et al., 2009; Komuro, 2006; Sanders et al., 1999). More detailed 
descriptions of ICC classification are available (Farrugia, 2008; 
Vanderwinden and Rumessen, 1999; Ward and Sanders, 2001). 
Subtypes of ICC are differentially dependent on KIT signaling. 
ICC-MY and ICC-IM develop before birth in the mouse and require 
KIT signaling (Burns et al., 1996; Torihashi et al., 1997), whereas 
ICC-DMP and ICC-SM develop postnatally and are less reliant on 
KIT signaling (Faussone Pellegrini, 1984; Torihashi et al., 1995; 
Ward et al., 1997). For example, in Sl/Sld or W/Wv mice, which 
have reduced KIT signaling, ICC-DMP of the small intestine are 
not affected (Iino et al., 2020; Kwon et al., 2009). Similarly, ICC-
SM in the subserosal layer of the colon are visible in W/Wv mice 
(Tamada and Kiyama, 2015). 

Interestingly, ICC-IM and ICC-MY in the large intestine, small 
intestine, stomach, and cecum require expression of ETV1. ETV1 
is an ets family transcription factor and a master regulator of ICC. 
ETV1 acts as part of an ERK-ETV1-KIT positive feedback loop to 
stimulate KIT transcription via enhancer binding (Hayashi et al., 
2015; Ran et al., 2015; Tamada and Kiyama, 2015). Etv1−/− mice 
show a significant loss of KIT-positive ICC-IMs and ICC-MYs. In 
contrast, ICC-DMPs and ICC-SM in the small and large intestine 
respectively are preserved, consistent with the kit independence 
and absence of ETV1 expression in these ICC subtypes (Tamada 
and Kiyama, 2015). 

Much less studied is the fact that some ICC populations may 
have different or additional requirements during development. 
Kondo et al., examined development of later developing ICC and 
showed expression of leucine-rich repeats and immunoglobulin-
like domains protein 1 (LRIG1) in ICC-DMP and ICC-SM (Kondo et 
al., 2015). LRIG1 knock out mice lack ICC-DMP and ICC-SM and 
have slower transit in the small intestine. 

ICC-IM may also require expression of natriuretic peptide recep-
tor B (NPR-B). Npr2slw/slwmice are a spontaneous mutant mouse 
strain, known also as a short-limbed dwarfism (SLW) mouse. Mice 
homozygous for SLW (Npr2slw/slw) are defective in NPR-B function 
due to a frameshift mutation in Npr2, particularly in the exon-8 
encoding the region present just under the transmembrane domain 
(Sogawa et al., 2010). The intestines of preweaning Npr2slw/slw 
mice showed a clear reduction in the number of ICC-IM (Sogawa-
Fujiwara et al., 2020).

Transcription profiling provides the opportunity to identify novel 
genes expressed in ICC that will contribute to understanding ICC 
development and function as well as molecular markers for ICC 
subtypes. Transcriptome profiling during development may identify 
molecular programs and switches determining ICC progenitor 
fate. An ICC transcriptome from GFP labeled mouse intestine 
identified novel markers, growth factors, transcription factors, 
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ion channels, and ion transporters (Lee et al., 2017). Unique ICC 
markers thrombospondin-4 and hyperpolarization activated cyclic 
nucleotide gated K+ channel (Thbs4 and Hcn4) were identified, as 
was expression of ten transcriptional variants of Ano1 (Lee et al., 
2017). The role(s) for Thbs4 or Hcn4 in ICC physiology, relating to 
motility, development, or turnover, would be interesting but has 
not been reported. Interestingly, two zebrafish hcn4 genes have 
been characterized and pharmacologic inhibition in developing 
embryos slows heart rate (Liu et al., 2022). The effects of Hcn4 
inhibition on motility patterns in 7 dpf embryos would indicate a 
functional role in ICC. A more recent publication examined gene 
expression in 5572 smooth muscle cells, 372 ICC cells, and 4805 
platelet derived growth factor alpha cells isolated from colonic tis-
sue surgery in 15 patients (Schneider et al., 2023). Platelet derived 
growth factor alpha cells are a second type of intestinal interstitial 
cell that works with smooth muscle and interstitial cells of Cajal 
to coordinate motility patterns. Cell type was identified based 
upon expression of specific genes such as KIT and ANO1 for ICC. 
These authors noted that expression of the mechano-sensitive 
ion channel PIEZO2 in ICC but not the other cell types. piezo 2b is 
the zebrafish homolog for human PIEZO2 and a functional role for 
piezo 2b was shown in the touch response for zebrafish embryos 
(Faucherre et al., 2013). If intestinal motility patterns in 7 dpf 
zebrafish are altered after piezo 2b knockdown, a functional role 
in ICC would be indicated. Apart from ion channels, a common 
transcriptional regulatory pathway for smooth muscle, ICC, and 
platelet derived growth factor alpha cells, three cell types involved 
in pacing and regulating smooth muscle contraction, was identified 
(Wright et al., 2021). A better understanding of this transcriptional 
regulatory pathway during development or cell turnover in mature 
tissue may help to identify the mechanisms determining progeni-
tor cell development, expansion, and differentiation to mature ICC 
subtypes. Manipulating or reprograming regulatory pathways will 
facilitate long-term rehabilitation of dysmotility. 

To summarize, the heterogeneity of ICC is evident through de-
velopment. ICC-MY and ICC-IM develop before birth in mice and 
have a strong requirement for KIT-signaling. ICC-DMP and ICC-SM 
develop postnatally and are less dependent on KIT signaling. ICC-
MY and ICC-IM require ETV1 function, and ICC-IM require NPR-B. 
ICC-DMP and ICC-SM require LRIG1. It is important to understand 
the relationships of ICC subtypes and their contributions to overall 
gut function. ICC heterogeneity is understudied in zebrafish. The 
zebrafish digestive tract is simpler along its length, the muscularis 
mucosae is absent, and it is less complex (Wallace et al., 2005; 
Wallace and Pack, 2003). Zebrafish are likely to have fewer ICC 
subtypes and therefore may be a good system to determine the 
functional contributions of distinct ICC populations on GI motility. 
A thorough morphological and molecular characterization of ICC 
subtypes in zebrafish remains to be done. 

Enteric nervous system influences on ICC development

Development of the enteric nervous system precedes ICC de-
velopment in the mouse intestine (Wu et al., 2000). Since enteric 
neurons express the kit ligand SCF, and ICC-MY and ICC-IM are 
juxtaposed to enteric neurons, it is expected that ICC development 
would depend upon enteric neurons. However, there are conflicting 
reports. Knockout mice lacking glial cell line-derived neurotrophic 
factor signaling (GDNF-/- mice) do not develop enteric neurons 

and express normal ICC populations (Uesaka et al., 2013; Ward 
et al., 1999). Different mouse lines lacking enteric neurons, ls/ls 
and ret-/-, have disrupted development of ICC-MY, either distally, 
or along the entire length of the intestine (Wu et al., 2000). Other 
ICC populations do not appear to depend on SCF produced by 
enteric neurons (Uesaka et al., 2013; Wu et al., 2000). 

Reconciling this data is difficult. One potentially important 
difference between these mutant mice is the presence and or 
localization of enteric neural progenitors. They are lost in the ret-
/- mice, retained in GDNF-/- mice, and have altered localization 
in Is/Is mice (Uesaka et al., 2013; Wu et al., 2000). While enteric 
neurons are not required for ICC development, neural progeni-
tors may support ICC-MY development. Three ENS progenitor 
populations have been identified in zebrafish and examining ICC 
development when ENS progenitors are lacking would contribute 
to understanding the relationships between ICC and ENS during 
development (Taylor et al., 2016). 

Smooth muscle influence on ICC development 

Smooth muscle development is a major regulator for patterning 
of the digestive tract with molecular and mechanical forces driving 
morphogenesis, resulting in orthogonal circular and longitudinal 
smooth muscles cells (Huycke et al., 2019). As the circular smooth 
layer differentiates there is a notable transition in the gut; the as-
sociated extracellular matrix drives the existing enteric nervous 
system network towards a highly oriented morphology (Chevalier 
et al., 2021b). Whether these same factors influence ICC develop-
ment is an unanswered, but intriguing question.

Maintenance of ICC

The ICC distribution and networks that develop late in the em-
bryonic period remain largely unchanged into adulthood. ICC are 
maintained through a balance of survival/trophic/growth factors, 
cell loss, and cell replacement by adult ICC progenitors (Bardsley 
et al., 2010; Hayashi et al., 2013; Horváth et al., 2006; Horváth 
et al., 2005; Ning et al., 2010). Adult ICC progenitors have been 
isolated from intestinal tissues of adult mice and characterized 
as KITlowCD44+CD34+Insr+Igf1r+ cells (Lorincz et al., 2008). These 
cells are capable of self-renewal in organotypic cultures (Bardsley 
et al., 2010; Lorincz et al., 2008). The proliferative state of ICC 
progenitors can be stimulated by IGF-1 or soluble SCF (Bardsley 
et al., 2010; Lorincz et al., 2008). IGF-1 may act directly on the 
progenitors and/or regulate production of SCF from smooth 
muscle and enteric neurons (Bardsley et al., 2010; Horváth et al., 
2006; Lorincz et al., 2008; Yang et al., 2017; Zhang et al., 2014). 
IGF-1 may also induce SCF production from ICC progenitors in 
an autocrine loop because KIT neutralizing antibodies partially 
inhibited IGF-I-induced proliferation (Bardsley et al., 2010). Prolif-
eration of ICC progenitors is also regulated by 5-HT(2B) signaling 
as Htr2b−/− mice show reduced proliferation of ICC-MY (Tharayil 
et al., 2010; Wouters et al., 2007). 

Interestingly, it does not appear KIT signaling is required to 
maintain the basal proliferation of ICC progenitors. Bardsley and 
co-workers examined this possibility because human patients 
with GIST relapse after treatment with tyrosine kinase inhibitors 
(Bardsley et al., 2010). Using a mouse with an activating muta-
tion in KIT, they isolated putative KIT progenitor cells from adult 



98    T. Sweet et al.

tissues then incubated them in tyrosine kinase inhibitors. These 
cells, termed KITlow, expressed just 10% of normal KIT on the 
cell surface, yet were able to develop into mature ICC (Bardsley 
et al., 2010). ICC progenitors also differentiate into mature ICC; 
first into KIT+CD44+CD34+Insr+Igf1r+ intermediate cells with ICC 
morphology, and then into mature slow wave producing, network 
forming KIT+CD44+CD34-Insr-Igf1r- ICC (Lorincz et al., 2008). 
Membrane-bound SCF may drive this differentiation because 
adult Sl/Sld mice, which express only soluble SCF, show decreased 
numbers of intermediate and mature ICC in adulthood (Bardsley 
et al., 2010). Stimulation of ICC differentiation from the progeni-
tor to mature phenotype by membrane bound SCF has not been 
demonstrated directly. 

The potential that membrane bound SCF drives differentia-
tion of adult ICC progenitors implies a role for KIT signaling in 
the ongoing maintenance of ICC networks. It is unclear whether 
adult progenitors support the differentiation of all the different ICC 
subtypes seen in vivo. In adulthood, ICC progenitor proliferation 
can be supported by, but is not dependent upon, KIT signaling. In 
contrast, ICC differentiation and thus maintenance of the networks 
is likely to partly depend on KIT signaling. Transcriptomics is be-
ginning to provide a molecular description of ICC in adult tissues 
but the transcriptome for ICC subtypes in adults, the molecular 
programs during development, and the molecular signaling driving 
differentiation of adult ICC progenitors is not yet clear (Foong et 
al., 2022; Lee et al., 2017).

Future directions

Examining ICC progenitors in intact organisms, with all of the 
associated complexity, would be beneficial. The zebrafish model 
may fill this niche. Zebrafish develop externally and embryogenesis 
can be directly observed in living animals. During later develop-
ment and organogenesis, larvae are relatively transparent, and 
pigmentation mutants casper and albino extend the timespan when 
the GI tract can be easily visualized. ICC have been identified in 
the zebrafish GI tract with antibodies to KIT and ANO1 (Ball et al., 
2012; Rich et al., 2007; Uyttebroek et al., 2013). Genome duplica-
tion in the teleost lineage has generated two paralogs of the KIT 
receptor (kita and kitb) and ANO1 (ano1a and ano1b). All 4 genes 
are expressed in the zebrafish GI tract (Nikaido et al., 2023; Rich 
et al., 2007). Retention of duplicate gene copies often leads to 
functional divergence. It is possible that zebrafish orthologues dif-
ferentially identify ICC progenitors and/or differentiated subtypes of 
ICC. Generation of gene reporter fish that allow direct observation 
of ICC lineage progression is feasible in intact animals. A better 
understanding of ICC origin and maintenance for all ICC subtypes 
will contribute to understanding GI motility.
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