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DUX4, the rockstar of embryonic genome activation?
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ABSTRACT During the initial days of development, the embryo gradually shifts from reliance on ma-
ternally provided RNAs and proteins to regulation of its own development. This transition is marked by
embryonic genome activation (EGA). While the factors driving human EGA remain poorly characterized,
accumulating evidence suggests that double homeobox 4 (DUX4) is an important regulator of this
process. Despite advances in single-cell methods which have allowed studies in early human embryos,
fundamental questions regarding the function and regulation of DUX4 persist. Here, we review current

knowledge of DUX4 with a focus on EGA in humans.
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Introduction

The oocyte-to-embryo transition culminates in the degrada-
tion of maternal transcripts and in embryonic genome activation
(EGA) (Schulz and Harrison, 2019; Vastenhouw et al., 2019). The
transcriptome changes prominently during the oocyte-to-four cell
and four-to-eight cell transitions that are considered as the minor
and major EGA stages, respectively (Braude, 1988; Petropoulos et
al.,2016; Tesarék, 1988; Tohonenetal.,2015; Vassenaetal., 2011,
Xue et al., 2013; Yan et al., 2013). In addition to the activation of
key developmental genes, the non-coding genomethat contributes
to genomeregulation becomes extensively transcribed (Boucken-
heimer et al., 2016; Paloviita and Vuoristo, 2022). The activation
of the embryonic transcriptome is intricately linked with major
alterations in the epigenome and chromatin architecture (Chen
etal.,, 2019; Liu et al., 2019; Wu et al., 2018; Xia et al., 2019). It is
conceivable that EGA takes place only in a favorable epigenomic
landscape that generates adequate conditions for timely gene
regulation. How these processes are regulated in human fertilized
oocytes and pre-implantation embryos, and whether the factors
involved exhibit redundancy, remain poorly understood.

DUX4 belongs to a group of double homeobox genes that are
unique to placental mammals. These genes are characterized by
two proximal homeoboxes that encode DNA-binding homeodo-
mains (Gabriéls etal., 1999). The primate specific DUX4 is believed
to have originated through retro-transposition of the ancestral
DUXC gene, followed by the loss of DUXC from the primate genome
(Leidenrothetal.,2012). DUX4 mRNA s enriched in humanzygotes
and cleavage-stage embryos (De laco et al., 2017; Hendrickson
et al., 2017; Liu et al., 2019; Tohonen et al., 2017; Vuoristo et al.,

2022). Silencing of DUX4 in human embryos leads to inefficient
degradation of maternal transcripts and incomplete EGA, which
implies a potential role of DUX4 as an EGA regulator (Liu et al.,
2022; Vuoristo et al.,2022). Human embryonic stem cells (hESCs)
have been used to elucidate possible roles of selected EGA fac-
tors given the shortage of supernumerary embryos donated for
research and the fact that experiments in human embryos are
challenging due to ethical and technical limitations (Gawriyski et
al.,2023; Hendricksonetal.,2017; Madissoonetal.,2016; Vuoristo
etal.,2022; Zouetal.,2022). InhESCs, ectopic expression of DUX4
activates both coding and non-coding genes that are typically
active in early human embryo at the time of EGA (Hendrickson
et al., 2017; Taubenschmid-Stowers et al., 2022; Vuoristo et al.,
2022; Yoshihara et al., 2022). These findings collectively suggest
a pivotal role for DUX4 in regulating human EGA. In this review,
we aim to provide the latest insight into DUX4 and discuss its
significance in the context of human EGA.

The peculiar DUX4 repeat locus

The DUX4 openreading frames are located in the subtelomeric
region of chromosome 4, within a macrosatellite repeat region
known as D4Z4 (Gabriéls et al., 1999) (Fig. 1). While the D4Z4
repeat array is typically epigenetically repressed in most tissues,
it becomes transiently derepressed in human embryos possibly
due to global epigenome reprogramming (De laco et al., 2017;
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Hendrickson et al., 2017; Liu et al., 2019; Vuoristo et al., 2022; Xia
etal.,2019). Therepetitive nature, high GC content, and low expres-
sion level of DUX4 pose challenges for sequencing and annotation
of this genomic region, particularly when working with human
embryos that are available in limited numbers. Most of our current
knowledge about DUX4 stems from research on its involvement
in the pathogenesis of facioscapulohumeral muscular dystrophy
(FSHD) (Campbell et al., 2018). FSHD is caused by derepression
of D474 locus which likely leads to a burst of DUX4 expression in
a subset of affected muscle cells resulting in cell death (Rickard
etal.,2015; Snider et al., 2010). The derepression of D4Z4 locus is
caused by either a reduction of D474 repeat units alone (FSHD1),
or defects in D4Z4 chromatin repressor SMCHD1 (FSHD2), or both
(FSHD1+2) (Hewitt, 2015; Sacconi et al., 2019). Interestingly, a
nearlyidentical D4Z4repeatarray exists onchromosome 10, but the
contraction of this repeat array does not cause FSHD presumably
due to the lack of a permissive polyadenylation signal (Lemmers
etal., 2010). The toxic effect of DUX4 in FSHD pathophysiology is
not yet completely understood but the mechanisms likely involve
the activation of the MYC-mediated apoptotic pathway and the
double-stranded RNA innate immune response pathway (Shadle
et al.,, 2017), as well as repression of nonsense-mediated decay
(NMD) (Campbell et al., 2023; Feng et al., 2015; Jagannathan et
al., 2019). Notably, DUX4 is cytotoxic not only for muscle cells but
also for various other cell types (Kowaljow et al., 2007; Resnick
et al., 2019; Rickard et al., 2015; Wallace et al., 2011; Yoshihara et
al., 2022). Given that in human embryos MYC expression is only
upregulated at the time of major EGA stage, the first two days of
development take place without one of the main factors behind
DUX4-induced cell death. This could be one of the reasons why
human embryos tolerate short-term DUX4 expression.

Although each repeat unit in the D424 array contains the DUX4
open reading frame, the current conception is that functional
DUX4 transcripts originate from the last repeat unit (Fig. 1). This
is explained by the position of the polyadenylation signal, which is

distal to the repeat array and thus transcribed exclusively as part
of the last repeat (Dixit et al., 2007). Consequently, individuals that
have a contracted D4Z4repeatregion butlackthe distal polyadenyl-
ation signal exhibit a normal muscle phenotype (Lemmers et al.,
2010). In addition to the DUX4 mRNA isoforms that are transcribed
from the D474 array on chromosome 4 and use the conventional
polyadenylation signal, numerous isoforms that utilize alternative
polyadenylation sites have been described to originate from both
chromosome 4 and 10. These isoforms likely result from alterna-
tive splicing, however the mechanisms that control the splicing
of DUX4 transcripts remain obscure. Moreover, it is unclear which
mRNA isoforms give rise to functional DUX4 proteins. Testis and
some cancer cell lines express DUX4 transcripts that most likely
produce a complete DUX4, as indicated by immunofluorescence
stainings and the activation of DUX4 target genes (Smith et al.,
2023; Snider et al., 2010). In contrast, various somatic tissues,
including healthy muscle, express low levels of capped and poly-
adenylated DUX4 transcript isoform, which probably produces a
truncated protein that lacks the transcription activation domain
and, consequently, the ability to activate DUX4 targets (Snider et
al., 2010). DUX4 mRNA isoforms present in human embryos have
not been described.

The properties of DUX4

The DUX4 protein contains an N-terminal DNA binding domain
and C-terminal transcription activation domains (Lee et al., 2021;
Mitsuhashi et al., 2018; Vuoristo et al., 2022). The N-terminal
DNA-binding domain of DUX4 includes two homeodomains, HD1
and HD2, that arose from an internal duplication of a single ho-
meodomain and consequently, exhibit a high degree of similarity
(Leidenroth and Hewitt,2010). A primate specific mutation changing
arginine to glutamate in HD1 have led to the different target DNA
sequence preferences of HD1 and HD2; 5-TAAT-3' and 5-TGAT-3,
respectively (Lee et al., 2018). DUX4 has been shown to regulate a

Fig. 1. The D4Z4 repeat array
and DUX4 mRNA isoforms. The
protein coding DUX4 transcripts
are thought to originate from the
last D4Z4 repeat unit and to utilize
. exonsdistaltotherepeatarray that
~ provide canonical polyadenylation

PAS PAS :

signals (PAS). DUX4 transcript iso-
forms are generated through alter-

native splicing, but the regulation of
this process is poorly understood.
In facioscapulohumeral muscular
dystrophy (FSHD) muscle, DUX4
mRNA contains exons 1-2-3, and
the first intron is alternatively

Full-length DUX4

_ D474 repeat array e
| B H R H R H
<| T
=3 I
=Y
--------- Exon 1 2 3 \
..... ] fa) C-term D
Pp—1 « w
< *
pd —
<
S — .
T w

spliced (Snideretal.,2010). Testicu-
lar tissue expresses DUX4 mRNA
isoforms with exons 1-2-4-5-6-7
and 1-2-6-7 (Snider et al., 2010).
Healthy myoblasts use a cryptic
splice site within the first exon and

Short DUX4

express a DUX4 mRNA isoform that is predicted to give rise to a truncated DUX4 (short DUX4 or DUX4-s) that contains the N-terminal homeodomains,
but lacks the C-terminus (Snider et al., 2010). Additional DUX4 mRNA isoforms that utilize alternative polyadenylation signals are likely to exist (Smith et
al., 2023). The asterisk (*) indicates the location of the translation stop codon. Abbreviations: C-term, C-terminus; DUX4, double homeobox 4; HD, home-

odomain; PAS, polyadenylation signal.



set of transposable elements (TEs) (Vuoristo et al., 2022; Young et
al., 2013). Hence, the unique HD1 target sequence in primates, as
opposed to other mammals, may have evolved as a consequence
of co-evolution with species-specific TEs (Lee et al., 2018).

While all the human DUX family members, including DUX4,
DUXA and DUXB, contain the N-terminal DNA-binding domain,
only DUX4 possesses the conserved C-terminal domain (Leiden-
roth and Hewitt, 2010). The C-terminus of DUX4 contains a nine
amino acid transactivation domain (9aaTAD) (Mitsuhashi et al.,
2018) and a KIX-binding motif (KBM) (Vuoristo et al., 2022). The
C-terminal domain is essential for DUX4-mediated transcriptional
activation and cytotoxicity (Bosnakovski et al., 2008; Choi et al.,
2016; Mitsuhashi et al., 2018). Consequently, DUXA and DUXB,
which lack the C-terminal domain, are incapable of activating tran-
scription and do not cause cytotoxicity (Bosnakovski et al., 2023).
Theregion between the N-terminalhomeodomains and C-terminal
transactivating domain is predicted to be intrinsically disordered
(Mitsuhashi et al., 2018). While many transcription factors contain
an intrinsically disordered region (IDR), the precise nature of their
function is not well understood (Ferrie et al., 2022). The deletion
of the region between homeodomains and C-terminus does not
affect the activation of the known DUX4 target gene ZSCAN4
(Choi et al., 2016; Mitsuhashi et al., 2018) nor does it protect from
the DUX4-elicited cell death in myoblasts (Choi et al., 2016) and
HEK293 cells (Mitsuhashi et al., 2018). However, further studies
are required to determine whether the IDR lacking form of DUX4
can fully recapitulate the function of full-length DUX4.

DUX4 in EGA regulation

DUX4 was first associated with embryogenesis when it was
observed to activate early developmental genes in muscle cells
of FSHD patients (Geng et al., 2012). Since then, experiments
conducted in various cell types, including human myoblasts (Ja-
gannathan et al., 2016; Resnick et al., 2019; Rickard et al., 2015),
human pluripotent stem cells (De laco et al., 2017; Hendrickson et
al., 2017; Taubenschmid-Stowers et al., 2022; Vuoristo et al., 2022;
Whiddon et al., 2017; Yoshihara et al., 2022), and most recently
various cancer cell lines (Smith et al., 2023), have consistently
reported the activation of genes and TEs characteristic of early
embryos upon induced or spontaneous DUX4 expression. DUX4
mRNA is enriched in zygotes and early cleavage stage embryos
(Delacoetal.,2017; Liuet al., 2019; Téhonen et al., 2017; Vuoristo
et al.,, 2022). DUX4 protein shows nuclear accumulation in 2- and
4- cell stage embryos followed by rapid clearance by the 8-cell
stage (Hendrickson et al., 2017; Vuoristo et al., 2022). Given the
ethicalandtechnical challenges associated withresearchinvolving
human embryos, many insights into the DUX4 functions have been
derived fromthe studies conducted using inducible DUX4 transgene
cell lines. Inspired by these findings, the scientific community has
recognized DUX4 as one of the earliest regulators of EGA.

DUX4 activates the non-coding genome

In accordance with the timing of the nuclear localization of
DUX4 (Vuoristo et al., 2022), the accessible genomic regions in
2-cell and 4-cell embryos are enriched with DUX4 binding motifs
(Hendrickson et al., 2017; Liu et al., 2019; Wu et al., 2018). Acces-
sible chromatin regions in human cleavage stage embryos are
frequently located at distal sites (> 5 kb from the transcriptional
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start sites) of genes and enriched at TEs (Gao et al., 2018; Liu et al.,
2019; Wu et al., 2018). TEs are mobile genetic elements constitut-
ing approximately half of the human genome (Franke et al., 2017).
TEs are enormously diverse and divided into distinct classes and
families based ontheir modes of transposition, structural features,
and evolutionary relationship (Bourque et al., 2018). TEs promote
genetic diversity by moving within the genome, which can lead to
alterations in host genes and regulatory sequences. This mobility
poses a significant risk to genome stability, and therefore several
mechanisms have evolved to suppress TEs (Almeida et al., 2022).

Human TEs are transcriptionally and post-transcriptionally
repressed by various chromatin remodellers, Kriippel-associated
box (KRAB) domain-containing zinc finger proteins, and small
RNAs (Almeida et al., 2022; Gainetdinov et al.,2017; Janssen et al.,
2018). However, a substantial proportion of TEs, including human
endogenousretroviral (HERV) elements, aretransiently active during
pre-implantation development (DiRusso and Clark, 2023; Goke et
al., 2015; Grow et al., 2015; Liu et al., 2019; Pontis et al., 2019; Xu
etal., 2022). For instance, MLT2A1 elements that are members of
the HERV family, become accessible and transcribed at the 4-cell
stage, retain these states for the 8-cell stage, but are subsequently
repressed (Liuetal.,2019). Notably, DUX4 overexpressioninhESCs
leads to the binding of DUX4 to 30% of the embryonically acces-
sible MLT2A1 elements (Hendrickson et al., 2017; Liu et al., 2019).
DUX4 also activates transcription of various other TEs (Geng et al.,
2012; Hendrickson et al., 2017; Vuoristo et al., 2022; Young et al.,
2013), and for example, the EGA genes ZSCAN4 and KHDC1P1 are
regulated by DUX4-activated ERVL-MaLR overlapping enhancersin
DUX4-expressing hESCs (Vuoristoetal.,2022). Some TEs have been
evolutionarily co-opted to regulate species- and context-specific
gene expression programs (Franke et al., 2017; Hashimoto et al.,
2021; Liang et al., 2010; Macaulay et al., 2011; Pontis et al., 2019;
Whiddon et al., 2017), and we speculate that some DUX4-induced
TEs may have been co-opted to regulate human EGA transcripts.

Mechanisms of DUX4-mediated gene regulation

DUX4 has the capacity to modulate nucleosome structure by
inducingthe expressionandincorporation of histone variants H3.X
and H3.Y, which are associated with a relaxed chromatin state
and enhanced transcription of the DUX4 target genes (Resnick
etal., 2019). In myoblasts, induced DUX4 expression leads to the
incorporation of H3.X/Y into highly transcribed DUX4 target genes,
potentially contributing to the maintenance of an open chromatin
conformation (Resnick et al., 2019). Studies on protein-protein
interactions in myoblasts and HEK293 cells have shown that DUX4
can interact with histone acetyltransferases p300 and the CREB
binding protein (CBP) (Choietal.,2016;Vuoristoetal.,2022). These
histone acetyltransferases are typically recruited to enhancers by
transcription factors, resulting in local acetylation of H3K27 and
subsequent expression of target genes (Raisneretal.,2018). DUX4
interacts with p300/CBP through its C-terminus, and the deletion
of the last 98 amino acids of the DUX4 C-terminus disrupts the
interaction with both p300 and CBP (Choi et al., 2016). The expres-
sion of several DUX4 target genes is reduced when the interaction
of p300/CBP with DUX4 is disrupted by the DUX4 C-terminal de-
letion (Choi et al., 2016) or by p300/CBP inhibition (Bosnakovski
et al., 2019), suggesting that transcriptional activation of certain
DUX4 target genes depends on p300/CBP. Furthermore, DUX4
can interact with several chromatin modifiers and transcriptional
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modifiers both stably and transiently (Vuoristo et al., 2022). DUX4
interacts with several mediator complex family members that relay
regulatory signals from transcription factors to RNA polymerase
Il (Chen et al., 2021). DUX4 binds MED15 via the six amino acid
KIX binding motif, which is located at the very end of the DUX4 C-
terminus (Vuoristo et al., 2022). This interaction presents another
direct mechanism of DUX4-mediated transcriptional modulation.
Besides transcriptional regulation, DUX4 has been implicated in
translational regulation. Arecent study showed thatinduced DUX4
expression leadstotranslational suppression of numerous mRNAs
in myoblasts (Hamm et al., 2023). The DUX4-mediated regulation
of translation is likely attributed to alterations in the activity of
translation initiation regulators 4EBP1, elF4E, and elongation fac-
tor eEF2, however, the intermediate mechanisms responsible for
perturbing these factors remain unknown (Hamm et al., 2023).
Taken together, DUX4 emerges as a versatile regulator, engaging
with a variety of proteins to shape transcription and translation
processes (summarized in Fig. 2). Further research is needed to
elaborateimplications of the DUX4 proteininteractions and unravel
the precise regulatory mechanisms downstream of DUX4.

Regulation of DUX4 expression

DUX4 transcripts have not been detected in oocytes, indicat-
ing that DUX4 is embryonically expressed, however factors and
processes responsible for triggering DUX4 expression in human
embryos remain unknown. In a study by Grow et al.,an LTR element
(LTR10C) near the DUX4 gene was identified as a DUX4 enhancer
in myoblasts and induced pluripotent stem cells (iPSC) that were
derived from FSHD patients (Grow et al.,2021). This enhancer was
found to be bound by p53, a transcription factor thatis activated in
response to DNA damage, and as shown by CRISPR interference
is required for full p53-dependent activation of the DUX4 locus in

Fig. 2. A summary of the suggested mecha-

N , \ / nisms of action of DUX4. DUX4 accumulates
. _ \ / in the nuclei of two- and four-cell stage human
- _ — e s embryosandis subsequently cleared by the 8-cell

P - \\\ - - stage (left) (Hendrickson et al., 2017; Vuoristo et

al.,2022). DUX4regulates chromatin accessibility
(Resnick et al., 2019; Vuoristo et al., 2022), and
interacts with various proteins, such as histone
acetyltransferase p300 (Choi et al., 2016) and
mediator complex members (Vuoristo et al.,
2022), which areinvolved intranscriptional regu-
/ lation. DUX4 activates severalembryonicgenome

activation (EGA)-associated genes, repetitive

elements (De laco et al., 2017; Geng et al., 2012;
\ Hendricksonetal.,2017;Liuetal.,2019; Vuoristo

et al., 2022) and putative enhancers (Vuoristo
et al., 2022), and it was recently implicated in
inhibition of translation initiation and elongation
(Hammetal.,2023). Abbreviations: DUX4,double
homeobox 4; eRNA, enhancer RNA; H3K27ac,
histone 3 lysine 27 acetylation; MED, mediator
—~a== complex, mRNA, messenger RNA.

FSHD iPSC (Grow et al., 2021). However, p53 binding alone is in-
sufficient to cause activation of DUX4 expression as the enhancer
also becomes occupied by p53 in non-FSHD cells upon induction
of DNA damage. Therefore, it is likely that p53-induced DUX4
expression entails additional prerequisites such as inefficient
epigenetic repression, as is observed in FSHD (Grow et al., 2021).
Notably, telomere shortening, a phenomenon observed both in
FSHD (Stadler et al., 2013) and human embryos up to the 4-cell
stage, may result in the loss of H3K9 methylated heterochromatin
atthe DUX4 locus (Zhang et al., 2023). This decrease in epigenetic
repression is suggested to facilitate p53 binding to the LTR10C
enhancer subsequently leading to the activation of DUX4 (Zhang
etal., 2023).

EGA is required for zygotic development, but it is equally im-
portant that this unique transcription program is timely repressed
as development progresses. The level of H3K9me3, which is
strongly associated with densely packed and transcriptionally
silenced heterochromatin, gradually accumulates during human
pre-implantation development (van de Werkenetal.,2014; Xiaetal.,
2019; Xu et al., 2022; Yu et al., 2022). While some TEs are marked
by H3K9me3 throughout development, others gain H3K9me3 in
a stage-specific manner (Xu et al., 2022; Yu et al., 2022), strongly
implying their developmental stage-specific involvement in cis-
regulatory functions during human embryogenesis. Mechanisms
behind the selective temporal repression of specific genomic loci
during human EGA remains poorly understood. Mouse DUX, a ho-
molog of DUX4, has been suggested to contribute to the establish-
ment of H3K9me3 by inducing the expression of DUXBL, which is
subsequently recruited to DUX-bound regions with the TRIM24/33
complexto facilitate the silencing of the associated genes and TEs
(Vega-Sendinoetal.,2024). Arecent study proposes an analogous
mechanism in humans, where DUXA that is expressed in the 8-cell



stage embryos (Tohonen et al., 2015), potentially contributes to
the repression of DUX4 target loci (Bosnakovski et al., 2023).
DUXA DNA binding motifs are highly similar to those of DUX4 (Liu
et al., 2019), however DUXA lacks the C-terminal transactivating
domain, presumably abolishing its ability to activate transcription
(Bosnakovskietal.,2023). Remarkably, when both DUX4 and DUXA
are ectopically expressed in myoblasts, the expression levels of
DUX4 target genes are significantly reduced (Bosnakovski et al.,
2023). DUXA expression is activated by DUX4, which points to a
feedback inhibition mechanism where DUXA suppresses DUX4
targets, possibly as a result of competitive target sequence bind-
ing by DUX4 and DUXA (Bosnakovski et al., 2023).

The mechanisms of DUX4 repression in human embryos and
somatic tissues remain unclear, however it is conceivable that
multiple epigenetic mechanisms, such as DNA methylation and
H3K9me3 mediated heterochromatin formation, contribute to
this. In mouse 2-cell embryos, the relocation of Dux loci to the
nucleolar periphery potentially drives the repression of Dux through
the formation of perinucleolar heterochromatin, concurrently with
the maturation of nucleoli (Xie et al., 2022; Yu et al., 2021). Also
in human embryos, nucleoli maturation initiates around the time
of EGA (Tesarik et al., 1986) and coincides with the repression
of DUX4 (Kresoja-Rakic and Santoro, 2019). However, whether
nucleolar maturation contributes to DUX4 repression in humans
remains a topic for future research. Due to the location of DUX4 in
the subtelomeric region, it may be affected by the transcriptional
repression induced by the spread of telomeric heterochromatin,
named telomere position effect (TPE) (Lee et al., 2021). Zhang
et al., have provided evidence that telomere extension may con-
tribute to the silencing of DUX4 in human embryos, supported by
the observation that telomere length extends during major ZGA
(Zhang et al., 2023) and longer telomeres lead to pronounced TPE
(Baur et al., 2001).

Future prospects

Ever since DUX4 was recognized as a potent EGA factor it
has raised broad interest across the research community. Earlier
findings about DUX4 that were mainly focused on the etiology of
FSHD, have become augmented by recent perceptions that DUX4
actively modulates embryonic gene expression and embryonic
development. Yet several important questions about DUX4 and
its implications in human oocyte-to-embryo transition and EGA
remain unanswered. Current DUX4 annotations rely on the DUX4
sequences found in human somatic cells like myoblasts and
therefore, it is possible that human zygotes express DUX4 se-
quence variants. Cloning and sequencing of the full-length DUX4
mRNA from zygotes and cleavage stage embryos using traditional
PCR-based technologies may be complicated due to the repetitive
nature and high GC content of this transcript (Jagannathan et al.,
2016). Therefore, recent technological improvementsinlong read
sequencing may prove to be usefulin determining the DUX4 mRNA
sequenceinhuman embryonic samples. Relatedly, recent findings
according to which the canonical DUX4 interacts with numerous
chromatin modifiers, RNA-binding proteins, and transcriptional
modifiers open an interesting avenue to study which of these
interactions take place in a context-dependent manner and how
these interactions may pertain to embryonic development.

Our understanding about the implications of DUX4 in human
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development is restricted, mainly due to ethical and technical
limitations related to experiments where human embryos are used.
Downscaling the amount of input material needed to perform for
instance chromatin profiling has enabled informative analyses
about oocytes and preimplantation human embryos. As an ex-
ample, LICAT-sequencing that requires low input material (Liu et
al.,2019) allowed Zhang et al., to correlate chromatin accessibility
at the DUX4 regulatory region with DUX4 expression levels and
telomere length during EGA (Zhang et al., 2023). These types of
approaches clarify the possible mechanisms behind the onset of
DUX4 expression in human development. While mutating of the
DUX4 transcription start site in human zygotes leads to embryo
stalling by the 8-cell stage (Liu et al., 2022), the knockdown of
DUX4 leads to impaired oocyte-to-embryo transition (Vuoristo et
al.,2022). This indicates that RNAi-mediated knockdown of DUX4
at zygotic stage may not reveal a complete DUX4 phenotype. The
EGA-associated coding transcripts are relatively well-known, how-
ever anotherinteresting research avenue will be to investigate the
implications of TEsthatare activated atthe time of EGA. Transcrip-
tome andtranslatome profiling of preimplantation human embryos
incombination with extensive functional experiments emphasized
theimportance of both maternal and zygotic transcription factors
(Zou et al., 2022). These factors include TPRXL and OTX2 that
are of maternal origin and undergo translation starting from the
oocyte meiotic resumption (Zou et al., 2022). The OTX2 is highly
expressed in human oocytes (Xue et al., 2013; Yan et al., 2013),
and its binding motif is enriched at accessible chromatin regions
in the early embryo (Liu et al., 2019), indicating that it functions
temporally in parallel with DUX4. Simultaneous knockdown of
TPRXL and embryonically expressed TPRX1 and TPRX2 results
in developmental delay and impaired EGA, while knockdown of
these factors individually caused milder phenotypes (Zou et al.,
2022). EGA-associated factors presumably form a transcriptional
circuitry intheir specific epigenomelandscape. Furtherresearchis
imperative to understand how these factors function and to what
extent each of these factors may be indispensable for develop-
ment or whether they can compensate for one another. One of
the challenges related to research on human EGA factors is their
highly unique in vivo state, which is difficult to recapitulate in vitro.
Recently acknowledged 8-cellembryo-like cellularmodel systems
provide promising platforms for future studies (Mazid et al., 2022;
Moya-Jodar et al., 2023; Taubenschmid-Stowers et al., 2022; Yo-
shihara et al., 2022; Yu et al., 2022), although they lack some of
the key in vivo aspects such as the presence of maternal factors.
As a summary, recent studies have emphasized the role of DUX4
as one of the active transcription factors during human EGA and
focused ondiscoveringhow DUX4 may become activated,and how
it regulates its target sequences. Future research is imperative to
further elucidate mechanisms of DUX4 and other EGA factors in
the context of human EGA and in cellular reprogramming.
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