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ABSTRACT	 Differentiation of human induced pluripotent stem cells towards pancreatic islet endocrine 
cells is a complex process, involving the stepwise modulation of key developmental pathways, such as 
the Hedgehog signaling inhibition during early differentiation stages. In tandem with this active inhibition, 
key transcription factors for the islet endocrine cell fate, such as HNF1A, show specific changes in their 
expression patterns. Here we designed a pilot study aimed at investigating the potential interconnection 
between HH-signaling inhibition and the increase in the HNF1A expression during early regeneration, 
by inducing changes in the GLI code. This unveiled a link between the two, where GLI3-R mediated 
Hedgehog target genes inhibition is apparently required for HNF1A efficient expression.
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Introduction

Differentiation of human induced pluripotent stem cells (hiPSC) 
towards pancreatic islet endocrine cell types requires a stepwise 
sequence of events mimicking pancreas development. Along 
this sequence progression, key transcription factors are modu-
lated, essentially contributing to the acquisition of the endocrine 
phenotypes. Amongst these factors, HNF1A is key factor for the 
early differentiation towards pancreas progenitors as well as for 
the insulin-secreting beta-cell functionality. Diverse heterozygous 
mutations in the HNF1A gene cause the most prevalent form of 
monogenic diabetes in humans, HNF1A-MODY (or MODY3, Mono-
genic Diabetes of the Young) (Yamagata et al., 1996, Bjørkhaug et al., 
2003), characterized by changes in the islet architecture, decreased 
beta-cell mass, and functionality (Okita et al., 1999, Vesterhus et 
al., 2008, Servitja et al., 2009). The emergence and increase of 
HNF1A expression during guided differentiation (Cardenas-Diaz 
et al., 2019, Cujba et al., 2022, González et al., 2022) coincide to a 
period in which the Hedgehog signaling pathway (HH-signaling) is 
actively inhibited using antagonists of Smoothened (SMO) receptor 
(Kim and Melton, 1998, Rezania et al., 2014, Nostro et al., 2015), 
a key component of the signaling. 

During pancreas development the HH-signaling modulations 
plays an essential role, its inactivation being absolutely required 
for pancreas organogenesis (Xuan et al., 2016), even slight ecto-
pic activation compromising this process (Kawahira et al., 2003, 

Kawahira et al., 2005). Moreover, the pathway also plays a role in 
adult pancreas regeneration, its inactivation promoting regenera-
tive cell conversion events (Cigliola et al., 2018). The HH-signaling 
cascade is complex and is mediated by the combinatorial activity 
of the GLI members (GLI1, GLI2, GLI3 (Sabol et al., 2018)). Briefly, 
in the absence of HH ligands, the activity of the SMO receptor 
is inhibited by Patched (PTCH), leading to a sequence of events 
that culminates with the phosphorylation and partial degradation 
of the full length GLI2-FL and GLI3-FL and the generation of GLI3-
R and GLI2-R transcriptional repressors, which actively repress 
HH-signaling activity. In contrast with GLI2-R, whose processing 
is strongly context-dependent, GLI3-R is very stable and acts as a 
strong repressor of the HH-signaling target genes (Matissek and 
Elsawa, 2020), its loss being sufficient for the constitutive activa-
tion of the pathway, even in the absence of the HH ligands or SMO 
(Litingtung et al., 2002, Hu et al., 2006, Wang et al., 2007, Wang 
et al., 2010). Conversely, in the presence of HH ligands, SMO is 
released from the PTCH inhibition which prevents the phosphoryla-
tion (Chen and Jiang, 2013) and processing of the GLI2 and GLI3, 
which retain their full-length form (GLI2-FL, GLI3-FL). This allows 
the further transcription of GLI1, the key transcriptional activator 
of the pathway, thus promoting an amplifying feedback loop. 
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Importantly, the GLIs and their activated and repressor forms 
recognize the same DNA motifs, competing for the same binding 
sites. Thus, the HH-signaling transcriptional output is determined 
by the balance between the different GLI combinations and their 
repressor or activator states, a situation known as the GLI code 
(Ruiz i Altaba et al., 2007, Aberger and Ruiz i Altaba, 2014, Chaudhry 

et al., 2017, Sabol et al., 2018, Zhou and Jiang, 2022). 
Despite both being essential events and being actively regulated 

during the same period during differentiation, it is unclear if the in-
hibition of HH-signaling and increase of HNF1A are interconnected. 
In this forthright pilot study, we investigated this relationship by 
changing the GLI code during early differentiation and assessing 

Fig. 1. The HNF1A regulation and Hedgehog-signaling pathway during standard hiPSC differentiation to islet endocrine cells. (A) Scheme depicting 
the stages of hiPSC differentiation, the typical stage-specific transcription regulators and the period of SANT-1 induced inhibition of HH-signaling (green 
segment). (B) Graph representing the number of differentially expressed genes (DEGs, FC≥1.5, FDR<0.05) during the progression of differentiation. (C) 
Timeline of stemness marker expression. (D) Timeline of pancreatic islet hormone expression. (E) HNF1A expression dynamics revealed by RNAseq 
analysis. (F) Number of cells expressing HNF1A per region of interest during stages 2, 3 and 4 of differentiation and representative immunofluorescence 
images (Scale 75 µm; sum of n=10 confocal fields in 3 independent differentiation experiments). (G) Levels of GLI2 and GLI3 expression between [S4] and 
[S3] of differentiation. (H) Levels of expression of different HH-signaling target genes.
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HNF1A acquisition in differentiating cells. The results indicated a 
potential link between the two processes, which deserves a further 
and more comprehensive investigation. 

Results

To analyze the potential connection between the Hedgehog 
Signaling pathway (HH-signaling) inhibition effected between the 
stages 3 [S3] and 5 [S5] of differentiation and the regulation of 
HNF1A expression observed during the same timeframe, hiPSC 
were differentiated using a protocol developed by Rezania. et 
al., (Rezania et al., 2014), with minor modifications (Ghila et al., 
2021b) (Fig. 1A). 

We first characterized the transcriptional profile between [S3] 
(i.e. the initiation stage for HH-signaling inhibition) and all subse-
quent stages (i.e. up to Stage 7- [S7]) and observed an expected 
steady increase in the differentially expressed genes (DEGs, FC≥1.5, 
FDR<0.05) as differentiation progressed (Fig. 1B, from 3580 at 
[S4] to 9322 DEGs at [S7] as compared to [S3]). Moreover, key 
stemness markers, such as SOX2, OCT4 (POU5F1) or SALL4 were 
downregulated in a stage-wise fashion (Fig. 1C). In contrast, the 
pancreatic islet hormones (Insulin – INS, Glucagon – GCG, Soma-
tostatin – SST, Pancreatic Polypeptide – PPY and Ghrelin – GHRL) 
were upregulated with differentiation progression (Fig. 1D). 

Furthermore, the HNF1A transcription factor was steadily up-
regulated from stage [S3] onwards (Fig. 1E). In addition, at protein 
level, immunofluorescence (IF) confirmed a statistically significant 
increase in the fraction of HNF1A positive (HNF1A+) cells with 
stage evolution (Fig. 1F). Contrastingly, components of the HH-
signaling pathway, such as GLI2 (-3.79x) and GLI3 (-1.53x) were 
observed downregulated as early as the first period of Smoothened 
(Smo)-inhibitor SANT-1 administration (Fig. 1G). As expected, the 
effect of SANT-1 inhibition became unequivocal during the next 

stage, with key HH-signaling target genes, known markers of its 
activation/inhibition, such as GLI1 (-3.36x) and PTCH1 (-2.41x) 
amongst others, presented a downregulation pattern (Fig. 1H).

		
Pathway analyses infers a link between HNF1A and HH-
signaling

We further explored by pathway analysis the SMO-induced 
inhibition of the HH-signaling pathway stages ([S3] to [S5]). The 
analysis revealed one top causal network inferring the HH-signaling 
inactivation and linking it, indirectly, to HNF1A regulation (p-value of 
overlap =2.30E-73, activation z-score = -2.854) as early as the first 
SANT-1 SMO-inhibition period ([S3] to [S4], Fig. 2A). Furthermore, 
by the end of the SANT-1 treatment period GLI1 was inferred in the 
top predicted upstream transcriptional regulators of the analyzed 
landscape (Fig. 2B), while the top causal network (p-value of over-
lap =1.83E-99, activation z-score = -2.733) associated once more 
HH-signaling inactivation with HNF1A upregulation via indirect 
association (Fig. 2C). These data suggest a potential link, though 
indirect, between HH-signaling activity pattern and HNF1A levels.

			 
HNF1A expression and protein levels are regulated by 
changes in the GLI code during posterior foregut induction

To explore the connection between HNF1A and HH-signaling, 
we replaced the SANT-1 Smo-inhibitor (standard differentiation) 
with a different class of antagonist, GANT-58 (Lauth et al., 2007) 
at the same stage ([S3], Fig. 3A). In contrast to SANT-1, GANT-58 
specifically inhibits the GLI1 and GLI2 effectors of the HH-signaling 
and promotes their accumulation into the nucleus (Lauth et al., 
2007, Stanton BZ, 2010). Consequently, while GANT-58 alleviates 
the activity of GLI1 and GLI2, it will not affect GLI3 transcriptional, 
neither as GLI3R nor GLI3FL. Thus, SMO-dependent signaling ac-
tivity will still control GLI3 stability (Fig. 3B). Importantly, through 
its inhibition on SMO-receptor, SANT-1 affects the activation of 

Fig. 2.  Pathway analysis of the transcriptional landscape of the differentiation period characterized by hedgehog-signaling inhibition. (A) Causal 
network characterizing the differential transcriptional landscape between [S4] and [S3]. (B) The top predicted upstream transcriptional regulator with 
predicted inhibition. (C) The top causal network characterizing the differential transcriptional landscape between [S5] and [S3].
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all GLIs. However, it is unable to prevent a possible GLI1 or GLI2 
activation by downstream SMO-independent, mechanisms, such 
as the ones involving the mTOR signaling pathway. Thus, the two 
drugs’ effects on the GLI code are expected to be different (Fig. 
3B). Of note, the complete removal of a HH-signaling inhibitor is 
not possible due to the requirement of SHH-signaling inhibition 
for differentiation towards the pancreatic cell lineage (Apelqvist 
et al., 1997, Hebrok et al., 1998) and expression of critical devel-
opmental factors for the development of the pancreas, such as 
Pdx1 (Hebrok et al., 1998).

The GANT-58 inhibition strongly decreased the percentage 
of HNF1A+ cells (Fig. 3C), which suggests, considering the 
SANT-inhibitor GLI code (GLI2R, GLI3R, possible non-canonical 
GLI1), that the observed HNF1A increase is dependent either on 
the repressive activity of GLI2R, GLI3R or the increase in GLI1 
activity via non-canonical GLI1 activation (Lauth and Toftgard, 
2007). To explore if the observed decrease in the fraction of cells 
expressing HNF1A was caused by cell death or a general impact 
on transcription, we compared the proportion of cells positive for 
HNF1B, another HNF factor expressed during the same period, 
following SANT and GANT inhibition. In contrast with what was 
observed for HNF1A, the experiment revealed no change in the 
fraction of HNF1B+ cells, indicating that the effect of HH-signaling 
inhibition on HNF1A is specific (Fig. 3D). 

		
mTOR-signaling activation antagonizes HNF1A abundance 
during early differentiation

To investigate if the potential non canonical GLI1 activation 
impacts HNF1A levels, we targeted the mTOR-signaling pathway, 

a known transducer of non-canonical GLI1 activity, especially in 
the context of cancers, where the crosstalk between the HH- and 
mTOR-signaling was demonstrated to be extremely potent (Wang 
et al., 2012, Brechbiel et al., 2014). To inactivate the pathway, we 
used specific Gapmers against the MTOR gene (Fig. 4 A,B) and 
transfected them at the same stage as before ([S3]). Although 
the MTOR silencing was inefficient (~60%, Fig. 4C), the propor-
tion of HNF1A+ cells increased upon MTOR inhibition (Fig. 
4D). Conversely, even a modest increase in the MTOR pathway 
activation by using the MHY1485 agonist triggered a decrease 
in HNF1A expression. These data suggest that mTOR-signaling 
activation antagonizes the HNF1A levels either directly or via 
non-canonical GLI1 activation. However, as there is no significant 
increase of either GLI1 gene or mTOR-signaling induced activity 
at this stage of differentiation ([S3], see Fig. 2A), the effect of 
mTOR-signaling on HNF1A levels during differentiation is prob-
ably GLI1-independent.

Overall, the results suggest that the observed increase in 
HNF1A during early differentiation is regulated at least partially 
by HH-signaling, probably through the repressor GLI2R or GLI3R, 
the output forms of SMO-inhibition by SANT.

		
Discussion

In this pilot study, we probed the connection between the 
guided inhibition of HH-signaling during early differentiation and 
the increase of HNF1A levels by changing the GLI code. The re-
placement of the SANT-1 SMO-inhibitor with the GANT-58 GLI1/2 
inhibitor changed the activation status of GLI3/GLI2 from the 

Fig. 3. Alternative hedgehog-
signaling inhibition. (A) The 
SANT-1 / GANT-58 experi-
mental setup. (B) SANT-1 and 
GANT-1 specific inhibition 
targets and the resulting GLI 
code. (C) The number of cells 
expressing HNF1A per region 
of interest following SANT-1 
and GANT-58 HH-signaling 
inhibition, as well as repre-
sentative immunofluores-
cence images (Scale bars: 
75µm, n=10 confocal fields, 
each column represents an 
independent differentiation 
experiment). (D) The number 
of cells expressing HNF1B 
per region of interest follow-
ing SANT-1 and GANT-58 
HH-signaling inhibition (n=10 
confocal fields, each column 
represents an independent 
differentiation experiment).
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repressive GLI3-R/GLI2-R (SMO-inhibition) to the active GLI3-FL/
GLI2-FL. This apparently minor modification in the protocol signifi-
cantly decreased the fraction HNF1A+ of cells by more than half, 
suggesting that HNF1A expression is susceptible to HH-signaling 
modulations. As GLI2 is often completely degraded via proteolysis 
(Pan et al., 2006, Pan and Wang, 2007), it is safe to assume that 
the observed regulation is mainly mediated by the GLI3 change 
in activation status, as also reported in other contexts (Hui and 
Angers, 2011). The negative impact on HNF1A levels observed 
following the replacement of the GLI3-R by the full-length GLI3-FL, 
suggests that Gli3-R repressive activity on certain HH-signaling tar-
get genes is required for its timely expression. In contrast, another 
key HNF factor for the development of the pancreas, HNF1B, was 
not impacted by the induced changes in the GLI code, indicating 
that this is not a general regulatory mechanism for the HNF factors 
during pancreas development.

Furthermore, we probed the potential involvement of non-
canonical HH-signaling, i.e. SMO-independent (Riobó et al., 2006, 
Ji et al., 2007, Whisenant et al., 2010, Sabol et al., 2018, Matissek 
and Elsawa, 2020, Chai et al., 2021, Sigafoos et al., 2021). The past 
decade revealed the possibility of GLI1 (Nye et al., 2014, Peng et 
al., 2019), and sometimes GLI2 (Dennler et al., 2009, Javelaud et 
al., 2011) or GLI3 (Li et al., 2018), regulation via HH-independent 
mechanism, especially in cancers (Chai et al., 2021). One such 
example is the mTOR-signaling (Wang et al., 2012, Singh et al., 
2017), known to induce GLI1 activation (Kebenko et al., 2015, 
Singh et al., 2017). During early differentiation, the inhibition of the 
mTOR-signaling, despite inefficient, elicited a significant increase 
in the fraction of HNF1A+ cells, however it is unclear if this was 

a direct effect of the pathway or it was mediated by an increase 
in GLI1 levels, further research being required to settle this issue.

A clear limitation of this pilot study is the limited readout, re-
stricted at the significant variations in the fraction of cells producing 
the HNF1A protein. Although this is suitable for establishing an 
initial link between HH-signaling and HNF1A during early differ-
entiation, mapping the exact regulatory mechanisms will require 
more rigorous, controlled, and comprehensive characterization. 
The present study established that such an investigation is worth 
pursuing. A second limitation is that here we focused only on the 
short-term effects of the GLI-code changes oh HNF1A levels. A 
future investigation on the long-term changes in HH-signaling, i.e. 
spanning the [S3] to [S5] period inhibition, will be required for es-
tablishing the extent of its impact on HNF1A and, consequently on 
the general differentiation efficiency and islet cell fate acquisition.

		
Materials and Methods

Cell sources
The cell lines used in this study were obtained from Synthego, 

being commercially available as induced pluripotent stem cells 
(iPSC) created by retroviral reprogramming of skin fibroblasts from 
the PGP1 donor from the Personal Genome Project (PGP) (Coriell, 
GM23338). hiPSCs were maintained on plates coated with Geltrex 
LDEV-Free Reduced Growth Factor (Gibco, A1413202) in mTeSR 
Plus cGMP stabilized feeder-free maintenance medium (Stem Cell 
Technologies, 100-0276). The hiPSCs were passaged using Gentle 
Cell Dissociation Reagent (StemCell technologies, 100-0485) by 
fragmenting the existing colonies. The human induced pluripotent 

Fig. 4. mTOR-signaling mod-
ulations. (A) Scheme depict-
ing the experimental setup of 
Gapmer-based mTOR silenc-
ing. (B) Scheme depicting the 
mechanism of action of the 
mTOR Gapmer. (C) qPCR ex-
hibiting the MTOR expression 
level following Gapmer-based 
mTOR silencing. (D) The 
number of cells expressing 
HNF1A per region of interest 
before and after MTOR inhi-
bition (n=10 confocal fields, 
each column represents an 
independent differentiation 
experiment). (E) qPCR exhib-
iting the expression level of 
MTOR and HNF1A following 
mTOR activation by MHY1485 
agonist.
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stem (hiPSC) cultures were checked regularly for mycoplasma by 
using MycoAlert Mycoplasm Detection Kit (Lonza, LT07-418) and 
tested negative prior induction of differentiation.

			 
In vitro differentiation and GLI inhibitors

The hiPSCs were differentiated according to a previously pub-
lished stepwise protocol (Ghila et al., 2020, Ghila et al., 2021a) start-
ing by seeding 1 500 000 cells/well in Geltrex-coated 6-well plates. 
For the standard differentiation, 0.25µM SANT1 (Sigma-Aldrich, 
S4572) was added from Stage 3 to Stage 5 (posterior foregut to 
pancreatic endocrine precursors). For GLI inhibition, SANT1 was 
substituted for 0.25µM GANT58 (Sigma-Aldrich, G8923) during 
Stage 3 (posterior foregut). 

			 
mTOR GapmeRs transfection

Differentiating posterior foregut cells (Stage 3) were transfected 
as previously described (Unger, 2023) with human Antisense LNA 
MTOR GapmeR (QIAGEN, 339511) using Lipofectamine RNAiMAX 
(Invitrogen, 13778075) according to manufacturer’s instructions. 
Briefly, 450 pmol MTOR GapmeRs were used to prepare GapmeRs-
RNAiMAX complexes. Following the daily change of differentiation 
medium, the GapmeRs-RNAiMAX were added, and cells were 
returned to incubator for the next 24 hours, until the next medium 
change. 

			 
Immunofluorescence staining

Prior to Geltrex coating, 12 mm glass coverslips (VWR, 631-
1577) were cleaned and placed in the 6-well plates, then hiPSC 
were seeded, differentiated, and treated as described above. At 
specific stages, the coverslips covered by differentiating cells were 
transferred using tweezers into a clean 12-well plate pre-filled with 
PBS, and further fixed for 20 minutes in 2% PFA at room tempera-
ture. Following several washed with PBS, the unspecific staining 
was blocked for 30 minutes at room temperature with 2% BSA in 
PBS. Polyclonal rabbit anti-HNF1A primary antibody (1/100, Abcam, 
ab204306) was used to detect the endogenous HNF1A-expressing 
cells, while polyclonal goat anti-HNF1B primary antibody (R+D Sys-
tems, AF3330) was used to detect HNF1B-expressing cells. After 
brief washes in PBS, the coverslips were incubated for 3 hours at 
room temperature, in dark, with donkey anti-rabbit A647 (1/500, 
Molecular Probes), or respectively donkey anti-goat A647 (1/500, 
Molecular Probes) and DAPI nuclear staining (D1306, Molecular 
Probes). The coverslips were mounted on glass slides using Aque-
ous Mounting Medium (Abcam, ab128982) and visualized using a 
Leica TCS SP8 STED 3X (Leica Microsystems) confocal microscope.

			 
Cell counting

Cell counting was performed using supervised automated 
counting of HNF1A stained nuclei, FIJI (imageJ version 2.9.0). 
Thresholding was done with “AutoThreshold” using Otsu Dark 
method on Max projection images from the SP8. Masks were then 
generated before a ROI was manually drawn around the islet. The 
number of cells was then counted by the “Analyze particles feature” 
with a size gating of 10μm.

			 
RNA extraction and RT-qPCR

The differentiating cells were collected by using Tryple, centri-
fuged at 200g for 5 minutes and stored at -80°C until further use. 
RNA extraction was performed using the RNeasy mini kit following 

the manufacturer instructions. Additionally, on-column digestion 
of DNA using DNase 1 was also performed (Qiagen, 79254). The 
quantity and quality of the eluted RNA was analyzed using Nanodrop 
One (Thermofisher) and 4150 TapeStation (Agilent, P/N G2992AA). 
MTOR and HNF1A gene expression was determined using Quan-
tiNova SYBR Green RT-PCR Kit (Qiagen, 208352). 

RNA sequencing
Total RNA samples were shipped to Qiagen Genomic Facility, 

where a second quality control, library preparation, sequencing, 
and mapping were performed. Data processing and analysis was 
performed on CLC Genomics Workbench. Fold changes were 
calculated from the generalized linear model, correcting for dif-
ferences in library size between the samples and the effects of 
confounding factors, while “FDR p-values” were calculated using 
the Benjamini-Hochberg method. Normalized expression values 
(TPM) for each gene and sample were calculated. The full datasets 
were deposited to the NCBI Gene Expression Omnibus repository, 
accession number GSE246049. 

			 
Pathway analyses

Differentially expressed gene lists, generated using the CLC 
genomics workbench (Qiagen), with FC ≥ 1.5 and p < 0.05 were 
then uploaded to the Ingenuity Pathway Analysis (IPA®, Qiagen) 
software to generate expression comparison analyses with follow-
ing parameters: Interaction networks: 35 molecules per network, 
25 networks per analysis, causal Networks active; node types: all 
entities except chemical subclasses; Data sources: All, Species: 
human.

			 
Statistical analyses

Statistical analyses were performed using GraphPad Prism 
v9.5.1 (GraphPad Software Inc., USA). RNAseq data were gener-
ated with using the Empirical analysis of DGE' algorithm in the 
CLC Genomics Workbench. FDR corrected p-values were used, 
with a significance threshold p-value of ≤0.05. We used parametric 
Welch's t test for the immunofluorescence data quantification. In 
figures, data are represented as mean ± SD (standard deviation) 
unless otherwise specified. Statistical significance was defined 
at P < 0.05 (*), P < 0.01 (**), P < 0.001 (***), and P < 0.0001 (****). 
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