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ABSTRACT	 Drug discovery is an extensive process. From identifying lead compounds to approval for 
clinical application, it goes through a sequence of labor-intensive in vitro, in vivo preclinical screening 
and clinical trials. Among thousands of drugs screened only a few get approval for clinical trials. Further-
more, these approved drugs are often discontinued due to systemic toxicity and comorbidity at clinically 
administered dosages. To overcome these limitations, nanoformulations have emerged as the most 
sought-after strategy to safely and effectively deliver drugs within tumors at therapeutic concentrations. 
Most importantly, the employment of suitably variable preclinical models is considered highly critical for 
the therapeutic evaluation of candidate drugs or their formulations. A review of literature from the past 10 
years on antiangiogenic nanoformulations shows the employment of limited types of preclinical models 
mainly the 2-dimensional (2D) monolayer cell culture and murine models as the mainstay for drug uptake, 
toxicity and efficiency studies. To top it all, murine models are highly expensive, time-consuming and 
require expertise in handling them. The current review highlights the utilization of the age-old chicken 
chorioallantoic membrane (CAM), a well-defined angiogenic model in the investigation of antiangiogenic 
compounds and nanoformulations in an economic framework. For practical applicability, we have evaluated 
the CAM model to demonstrate the screening of antiangiogenic compounds and that tumor cells can be 
implanted onto developing CAM for growing xenografts by recruiting host endothelial and other cellular 
components. In addition, the exploitation of CAM tumor xenograft models for the evaluation of nanopar-
ticle distribution has also been reinforced by demonstrating that intravenously administered iron oxide 
nanoparticles (IONPs) passively accumulate and exhibit intracellular as well as extracellular compartment 
accumulation in highly vascular xenografts. Finally, the ethical considerations, benefits, and drawbacks, 
of using CAM as an experimental model for testing potential therapeutics are also highlighted.
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1. Introduction

Patients diagnosed with tumor undergo surgery, radio- and/or 
chemotherapy depending on the type and stage of the tumor. The 
growing arsenal of oncology tools is elaborate, however, many tech-
nical impediments, such as the genetic instability of tumor cells, the 
inter- and intra-heterogenic nature of tumors, and the development 
of resistance or evasion of drugs by tumor cells prevent desired 
impact of these drugs. Failure to deliver a drug in optimal dose, as 
well as lack of efficient targeted delivery mechanism, often leads 

to severe systemic toxicity and treatment-associated morbidity. 
The pursuit of drugs that are safe and effectively delivered to the 
target site is the key research area. Angiogenesis, the formation of 
new blood vessels from pre-existing blood vessels, is the key driver 
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of tumor sustenance, proliferation, growth, migration or metastasis 
and has emerged as the primary target for anti-tumor therapies. 
However, the pre-clinical models for testing the anti-angiogenic 
potential of new drugs are limited.

An explicitly effective chemotherapeutic potential of a drug can 
only be appraised with the help of efficient in vitro and in vivo preclini-
cal model systems candidate (Alphandéry, 2018). By convention, in 
vitro, preclinical screening of potential drugs is followed by in vivo 
preclinical studies. For in vivo preclinical models, immunocompro-
mised mice are most commonly employed for developing orthotopic 
tumors as well as facilitating the screening of potential chemothera-
peutic drugs and their nanocarriers (NCs). Although murine models 
are optimal for mimicking different forms of cancer reported in 
clinics, research involving transgenic mice is expensive as well as 
time-consuming. On average, implantation of tumor xenograft can 
only be performed after 4 weeks of birth. Monitoring and evaluation 
of tumor growth have to be performed for 4-6 weeks with ethical 
clearance from the institutional animal ethical committee (Kunz et 
al., 2019). Efficacy studies are often jeopardized by ulcerations in 
developing tumors, signs of pain or sudden demise of the mouse. 
This powerful technique is associated with the suffering of animals 
as well as requires an elaborate infrastructure. Considering mon-
etary aspects, ethical issues and expertise requirement, it becomes 
furthermore important to look for an alternative/supplementary 
preclinical in vivo model system for the evaluation of drugs or NCs 
before moving on to higher models. This will help reduce the us-
age of murine models as well as increase the credibility of the test 

drug for clinical application being evaluated in multiple systemic 
models. Several simple model systems like zebrafish, Drosophila, 
and chick chorioallantoic membrane (CAM) models are potential 
alternatives for oncology studies. Amongst these models, the chick 
being homeothermic, the chick CAM bears the closest physiological 
relevance for the evaluation of pharmacokinetics and -dynamics of 
drugs for human application. 

In the current manuscript, the suitability of CAM standalone and 
CAM tumor xenograft models exploited to screen antiangiogenic 
compounds, and their exploitation for the evaluation of nanoformula-
tions as antiangiogenic therapeutics is highlighted. The study empha-
sizes the benefits of using CAM as an alternative or supplementary 
in vivo cancer model. Furthermore, the review has been supported 
by model experimental study carried out in our laboratory to enable 
researchers with no prior experience in the practical applicability of 
the CAM model.

		
2. Chick CAM model 

Chick CAM is an extraembryonic membrane, a very thin layer 
(rarely exceeding 100 µm thickness) formed by the fusion of the 
mesodermal layer of the outer wall of allantois with the adjoining 
mesodermal layer of the chorion (Deryugina and Quigley, 2008; 
Melkonian et al., 2002). Histologically, CAM comprises mainly, 1) 
the ectoderm adjacent to the shell membrane, 2) the mesoderm 
rich in blood vessels and other stromal components, and 3) the 
endoderm adjacent to the allantoic cavity (Deryugina and Quigley, 

Fig. 1. Chick embryo culture as an experimental model. (A) (a) Ex ovo boat culture method, (b) in ovo window culture method adapted from (Merlos Rodrigo 
et al., 2021) and (c) ex ovo hammock culture method. Adapted from (Kohli et al., 2020). (B) (a) Images showing antiangiogenic activity of andrographolide 
(Andro) at different concentrations, (b) at higher magnification and (c) graphical representation of the antiangiogenic activity of andrographolide. Adapted 
from (Dai et al., 2017). All images are licensed under CC BY.

BA



Chick CAM as a 3D in vivo model    117 

2008). CAM being an embryonic tissue and naturally perfused with 
blood vessels makes it an ideal model for studies associated with 
blood vessels including tumor angiogenesis or intravenous drug 
delivery evaluation. CAM additionally is attributed with several 
features pragmatic for application as a cancer biomedical model. 
Chick CAM up to embryonic development day (EDD) 14 lacks in-
nervation and is considered to impart no pain to the developing 
embryo (Eckrich et al., 2020; Schmitd et al., 2019) meeting the 3R 
strategies by Russel and Burch (Hubrecht and Carter, 2019). Usage 
of CAM for experimentation up to day 14 of embryonic development 
generally does not require any ethical clearance (Dhara et al., 2018; 
Robl et al., 1991). Interestingly, experimental manipulations on tumor 
angiogenesis or antiangiogenic drugs and nanoformulation screen-
ing with CAM models can be performed and completed before the 
embryo grows beyond day 14 of its developmental period, i.e., the first 
two-thirds of its incubation period (considering the total incubation 
period to be 21 days). Despite these virtues, the number of articles 
published in the last 10 years according to PubMed search using 
the keywords ‘chick CAM nanoparticles’, ‘murine nanoparticles’, 
‘chick CAM angiogenesis and ‘murine angiogenesis’ resulted in 
92, 39516, 586, and 22729 articles, respectively (accessed August 
2023). These trends indicate a disproportionately low-frequency 
use of this valuable age-old model system (CAM model) for new 
applications. Clearly, there is a need for greater recognition of the 
benefits of CAM model usage.

To employ chick culture for cancer angiogenesis experimenta-
tion, the working area needs to be increased for manipulation and 
implantation of tumors on the vascular bed of CAM. Several studies 
have extensively described simple as well as economical procedure 
for opening and shell-less culturing of chick embryos within the 
laboratory. Several choices of ex ovo and in ovo chick embryo culture 
methods/conditions are available such as: petri dish (Auerbach et al., 
1974; Dohle et al., 2009), polystyrene plastic wrap, polymethylpentene 
film, polyurethane membranes suspended from plastic tripod/cup 
(Buskohl, 2012; Dugan et al., 1991; Dunn and Boone, 1978; Dunn et 
al., 1981; Kamihira et al., 1998; Scott et al., 1993; Tahara and Obara, 
2014; Yalcin et al., 2010a), plastic weigh boats (Dorrell et al., 2012; 
Scott et al., 1993), plastic cups with rounded bottoms (Jakobson 

et al., 1989), and eggshell windowing (Farzaneh et al., 2018). The 
‘ex ovo’ expression is used in the technique of culturing chick em-
bryos for boat/hammock method, which involves incubating them 
outside the eggshell in an artificial environment, facilitating easier 
access and manipulation of the developing embryo for experimental 
purposes. On the other hand, the in ovo windowing method main-
tains the chick embryos within their natural environment, inside the 
eggshell. Since CAM development and assays performed on this 
tissue are performed in live embryonic conditions, in vivo expression 
is exclusively used by many investigators to refer to manipulation of 
CAM tissue in fertilized live embryos. Amongst the several methods 
available, three methods i.e., windowing (in ovo), boat (ex ovo), and 
hammock (ex ovo) type are the most commonly employed methods 
in therapeutic screening study. Window method involves culturing 
the chick embryo in its normal setup, where a small cut/window 
is made through the eggshell for visualization and experimental 
manipulation (Fig. 1A middle panel). The area of the cut could vary 
on the need of the experiment. The latter two are shell-less culture 
(ex ovo) techniques where the whole content of the fertilized egg 
is poured into a culture vessel. In the case of the boat method, the 
chick embryo development is generally maintained in a weigh boat 
(Fig. 1A top panel). The Hammock method involves suspending 
a membrane from a transparent/plastic tripod/cup (Fig. 1A bot-
tom panel). The suspended membrane is generally oval-shaped 
to closely recapitulate the normal egg shape. Into the oval-shaped 
membrane, the whole content of the fertilized egg is emptied and 
maintained for experimental manipulation. The optimal model is 
generally determined based on survival, working area for experimen-
tal manipulation, area of respiratory gaseous exchange and ease 
of transportation. The chick embryo survivability using different 
culture methods under various temperature and humidity conditions 
along with their applicability as an angiogenesis model is given in 
Table 1. Barring a few reports, the survivability of chick embryos in 
the window method is far superior to boat or hammock methods. 
However, it gives relatively lesser area for experimental manipulation. 
In terms of the cost, the window method is highly cost effective and 
economical in comparison to boat and hammock. However, it might 
differ based on the materials used.

Method Time frame Temperature Humidity % Survival Reference Advantages Disadvantages

Windowing

Up to EDD13 37°C 50% 85–95% (Naik et al., 2018) •	 Cost-effective.
•	 Wider range of tolerance to physical 

factors.
•	 Suitable for tumor xenograft angiogenesis 

assay.

•	 Limited access to CAM. Surface area for 
experimental manipulation.

•	 Not suitable for direct chick CAM angio-
genesis assay.

•	 Difficulty in imaging with good reso-
lution.

Up to EDD18 37.8 C° 70% >80% (Kunz et al., 2019)
Up to EDD14 37°C 60% 70% (Lokman et al., 2012)
At EDD7 37.5 °C N/A 67.96% (Eckrich et al., 2020)
Up to EDD8.5 38°C 60% 63% (Andacht et al., 2004)
Up to EDD8 38 °C 75% 50% (Ridderbusch et al., 2015)
Up to EDD11 37.5°C 60% 45.2-75% (Borwompinyo et al., 2005)

Boat

Up to EDD14 37- 38° C 60% >80% (Mangir et al., 2019) •	 Larger CAM surface area for experimental 
manipulation.

•	 Suitable for both direct CAM and tumor 
xenograft angiogenesis assays.

•	 Easy visualization and imaging with good 
resolution.

•	 Narrow range of tolerance to physical 
factors.

•	 Slightly expensive than windowing 
method.

Up to EDD13 37°C 50% 15–25% (Naik et al., 2018)
Up to EDD14 37°C 60% 10% (Lokman et al., 2012)

Hammock

Up to EDD13 37°C 50% 85–95% (Naik et al., 2018) •	 Cost-effective.
•	 Moderate CAM surface area for expe-

rimental manipulation (intermediate to 
windowing and Boat method).

•	 Suitable for both direct CAM and tumor 
xenograft angiogenesis assays.

•	 Narrow range of tolerance to physical 
factors.

•	 Extra caution requirement in handling.
•	 Slightly expensive than windowing 

method.

Up to EDD14 38°C 80%-90% 60% (Kohli et al., 2020)
Up to EDD8 37°C 60% 50% (Dugan et al., 1991)
Up to EDD14 38 °C 80% Up to 17% (Tahara et al., 2021)

Table 1

Chick embryo survivability using different culture methods and their applicability as angiogenesis model

[i] Abbreviations: EDD, Embryonic development day.
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3. Application of CAM in oncology

3.1. CAM standalone as in vivo angiogenesis model
Tumor endothelial cells (ECs) often exhibit differential responses 

from normal blood vasculature, however, chick embryonic devel-
opmental ECs and tumor angiogenesis utilize a similar network 
of growth factors, receptors and signaling pathways (Ziyad and 
Iruela-Arispe, 2011). In other words, developmental vasculogen-
esis (blood vessel formation de novo) and tumor angiogenesis 
(development of blood vessels from pre-existing blood vessels) 
processes have common molecular signals, such as vascular en-
dothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), 
platelet-derived growth factor (PDGF), transforming growth factor 
beta (TGFB1), angiopoietin 1/2 among others (Goldie et al., 2008; 
Kubis and Levy, 2003; Lugano et al., 2020; Vargesson, 2003). This 
interesting phenomenon and the intense angiogenic nature of the 
chick CAM makes it a very reliable and attractive tumor angiogenic 
model (Fig. 1B). By EDD8, the CAM blood vessels comprise of small 
arterioles and venules lying within the mesoderm and extensive 
capillary network located beneath the chorionic ectoderm (Aus-
prunk et al., 1974). Progressive changes have been observed in 
CAM blood vessel ECs from EDD8 to EDD18 with significant growth 

and remodeling up to EDD14 making it highly responsive to both 
pro- and anti-angiogenic stimuli (Ausprunk et al., 1974; Dupont 
et al., 2002). Many researchers working on tumor angiogenesis 
using CAM standalone model (CAM without tumor cell implanta-
tion), optimized their studies around EDD8-14/15. The finding of 
the antiangiogenic role of exosomes derived from stem cells of 
human deciduous exfoliated teeth using CAM was evaluated from 
EDD8 to EDD10 (Liu et al., 2022). The pro-angiogenic property of 
sodium arsenite and reversal activity by various selenium-derived 
compounds (dimethyl selenone, diphenyl selenone, sodium selenite 
or Se-methyl selenocysteine) was determined on CAM between 
EDD10-14 (Mousa et al., 2007). Using CAM of 12–15 day old chick 
embryo, intense pro-angiogenic activity of a novel sulfonamide-
chalcone hybrid was studied (Silva et al., 2022). Literature suggests 
that anti-angiogenic effects on chick CAM can be determined 
by measuring blood vessel density, diameter, thickness, length, 
branch points, total area of CAM (Ribatti, 2016), disorganization, 
bending or looping of vessels (Tufan and Satiroglu-Tufan, 2005) 
at or around the site of test compound application. Using CAM 
standalone angiogenesis assay, several natural and synthetic 
compounds have been evaluated for their antiangiogenic activ-
ity. It has been conveniently utilized for screening compounds of 

Antiangiogenic compounds Nature of compounds Treatment/active concentration Time frame Effects on CAM angiogenesis Method Reference
B-9-3 Derivative of harmine 0.31, 2.5 & 20 μg/egg EDD7-EDD10 ↓ number of blood vessels & 

branch points
Window (Ma et al., 2016)

D-limonene Monocyclic monoterpene 1, 5 & 10 µg loaded on 1 mm3 GS (pre-
soaked)

EDD8-EDD12 ↓ number of blood vessels dose‐
dependently

Window (Shah et al., 2018)

Docosahexaenoic acid (DHA) Omega-3 fatty acid 1, 10, 100 μM & 1 mM loaded on filter 
paper disc

EDD7-EDD9 ↓ number of vessels in a dose-de-
pendent manner.

Window (Pal et al., 2019)

Epigallocatechin gallate A phenolic antioxidant 250 μg/ml (100 µl) loaded on 5mm 
diameter filter disc

EDD7-EDD10 ↓ inhibited blood vessels with 
diameters ≤0.2 mm

Window (Liao et al., 2020)

Galangin Natural flavonoid 20 μM loaded on filter disc EDD5-EDD7 Disrupted angiogenesis with 
attenuated microvessels & fewer 
angiogenic vessels

Window (Chen et al., 2019)

(±)-Gossypol Natural polyphenolic 15, 30, 60 & 120 mM loaded 0.5 cm 
diameter filter paper

EDD7-EDD8 Dose-dependent anti-angiogenic 
effects

Window (Ulus et al., 2018)

Luteolin Tetrahydroxyflavone 1 nM, 1 uM &1mM EDD11-EDD12/13 ↓ angiogenesis Window (Ambasta et al., 
2015)

Miet Ethanolic extract of Melilo-
tus indicus

200 µg/ml on filter paper disc EDD6/7-EDD7/8 ↓ BV formation. Window (Saleem et al., 2021)

Myricetin Hexahydroxyflavone 25, 50 & 100 μmol (20 μl) in DMSO EDD9-EDD11 ↓ density of the vascular plexus Window (Zhou et al., 2019)
Naringenin Abietane diterpenoid 25 & 50 nmol/egg on glass coverslips 

(1 mm2)
EDD8-EDD10 ↓ BV numbers & branching 

patterns.
Window (Li et al., 2016)

Polyisoprenylated cysteinyl 
amide inhibitor: NSL-BA- 040

Synthetic 0.12, 0.30 & 0.60 μg in 50 µl DPBS EDD8-EDD10 ↓ number of vessels & branches 
in a concentration-dependent 
manner; virtually no vessels at 
0.60 μg.

Window (Nkembo et al., 
2016)

Ruthenium(II)-p-cymene 
complex 2

Organometallic 42 μM, 0.47 mg/kg (80 μl) in DMSO + 
0.9% NaCl daily from EDD11-EDD14

EDD11,12,13,14-
EDD15

Presence of avascular zones; ↓ 
branching point.

Window (Nowak-Sliwinska et 
al., 2015)

Scutellarin Glycosyloxyflavone 0.5, 1 & 2 uM suspended on sterile 
filter paper

EDD8-EDD13 ↓ micro-vessel formation Window (Zhu et al., 2017)

Shikonin Naphthoquinone 0.025, 0.05 & 0.1 pM place within 
silicone ring (12 mm × 10 mm × 1 mm 
diameter)

EDD6-EDD8 Distorted vascular architecture; ↓ 
number of BV (inhibition of new 
blood vessel formation)

Window (Liu et al., 2020)

Tanshinone I Abietane diterpenoid 0.01, 0.1, 1, 10 & 100 μM dried on 
coverslips

EDD7-EDD9 Attenuated neovascularization Window (Wang et al., 2015b)

Tanshinone IIA Lipophilic active constituent 
of Salvia miltiorrhiza root

2.5, 5, 10 & 20 µM dried on coverslips EDD7-EDD9 ↓ BV formation Window (Sui et al., 2017)

Thalidomide derivatives (8 
compounds)

Synthetic analogs of 
thalidomide

5 mg/ml (20 µl) on filter paper disc (2 
mm diameter)

EDD10-EDD12 Two compounds (2a & 2b) 
showed ↓ of vessels’ number, 
neovascularization area & total 
length of vessels.

Window (da Costa et al., 
2015)

Table 2

Representative studies showing chick CAM as standalone model 
for screening of potential antiangiogenic compounds

[i] Abbreviations: BV-Blood vessel, CA-4-Combretastatin A-4, CM-conditioned media, DPBS-Dulbecco›s Phosphate-Buffered Saline, GS-Gelatin sponge, HBSS-Hank’s balanced salt solution, YF-452-N-(N-
pyrrolidylacetyl)-9-(4-bromobenzyl)-1,3,4,9-tetrahydro-β-carboli.
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heterogenous nature (Table 2). Though several methods of chick 
embryo culture have been described in literature, window method 
has been the most preferred culture technique for the screening 
of antiangiogenic agents or formulations using CAM standalone 
angiogenesis model.

			 
3.2. CAM tumor xenograft as angiogenic model

Since 1990s, tumor xenografts have been successfully gener-
ated on CAM. Several types of tumor tissues have been grown on 
CAM with a high degree of correlation between the chick embryo 
assay and human tumors or mouse xenografts (Shoin et al., 1991). 
Table 3 highlights the tumor xenografts generated in chick CAM 
models using different cell lines along with the outcome of the 
study in terms of the xenograft size, degree of angiogenesis and 
other histopathological features. The findings of available research 
indicate that vascular human tumor xenografts are reproducibly 
formed by employing chick microenvironments. Tumors of human 
melanoma, colorectal carcinoma and glioblastoma (GBM) cell 
lines grafted on the chick CAM successfully generated tumors of 
sizes 5-10 mm which recapitulated the hallmarks of corresponding 
human specimens (Durupt et al., 2012). Diffuse intrinsic pontine 
glioma (DIPG) tumor grown on CAM exhibited similar genetic and 
epigenetic features as that of native tumors (Fig. 2A) (Power et al., 
2022). Burkitt lymphoma BL2B95 cell successfully generated on 
CAM showed a high degree of cellular, molecular and proliferative 

similarity with the human disease (Fig. 2B) (Klingenberg et al., 2014). 
Human ovarian OVCAR-8 xenograft exhibited close resemblance 
to cancer patient’s tumor extracellular matrix (ECM), stromal cells 
and extensive vasculature that efficiently formed on chick CAM 
(Vu et al., 2018). Hepatocellular carcinoma cell lines HUH7 and 
PLC/PRF/5 were grown with 100% success rate on chick CAM 
with an overall embryonic survival rate of up to 93% for HUH7 and 
83% for PLC/PRF/5 using window method (Li et al., 2015). Clear 
cell subtype of renal cell carcinoma, bladder and prostate cancer 
xenografts from established cell lines and freshly isolated patient-
derived tissue were grown on CAM with ≥70% success rate (Hu 
et al., 2019). Similarly, eight osteosarcoma cell lines, HOS, MG63, 
HOS 143B, CAL-72, U2OS, MNNG-HOS, Saos-2 and UMR-106 were 
successfully generated on CAM (Kunz et al., 2019). In view of the 
above studies, CAM tumor xenografts can be suitable model for 
studies targeted against tumor properties or therapeutics apart 
from antiangiogenesis including antineoplastic activity, drug as-
similation and validation of active targeting strategies such as 
nanotechnology.

			 
3.3. CAM tumor xenograft model for screening antiangiogenic 
compounds

Based on the robustness of the CAM model system, CAM 
xenografts have been employed for screening of anti-angiogenic 
compounds or lead molecules. Table 4 provides an overview of 

Fig. 2. The suitability of the chorioallantoic membrane (CAM) as a tumor-induced angiogenesis model. (A) Inoculation of patient-derived DIPG cell 
line on EDD9 (a); CAM DIPGIV (b) and DIPGXIIIp (c) xenografts at 48 h post inoculation; ultrasound image of DIPGIV (d) & DIPGXIIIp* (e) tumors grown 
below the CAM surface via RF power Doppler mode (red fluorescence represent active blood flow blood around the edges of tumor and within CAM; GFP 
tagged DIPGIV cells on CAM on EDD11 (f), EDD13 (g), & EDD15 (h); H&E and IHC staining of DIPGXIIIp* and DIPGIV tumors generated on rodent and CAM. 
Adapted from (Power et al., 2022). (B) CAM BL2B95 tumor histology; Panoptic Pappenheim staining (a-b), H&E staining (c), Trichrome staining (d), Ki67 
IHC staining (e), and Gomori silver staining (f). Adapted from (Klingenberg et al., 2014). (C) Images and graphical representation of reduced tumor volume 
(a-b), and antiangiogenic activity of andrographolide (c-d); graphical representation of tumor volume (e). Adapted from (Dai et al., 2017). All images are 
licensed under CC BY. Abbreviations: CAM, chorioallantoic membrane, DIPG, diffuse intrinsic pontine glioma; EDD9, embryonic development day 9; GFP, 
green fluorescent protein; H&E, Hematoxylin and Eosin, IHC immunohistochemistry.
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recent studies that have used CAM tumor xenografts as models to 
evaluate potential inhibitors of tumor-induced angiogenesis. Tet-
randrine at a concentration of 8 mg/ml (60 µl) exhibited decreased 
microvascular density (MVD) in CAM U87 xenograft (Ma et al., 
2015b). Similar result of reduced blood vessel development was 
obtained with nobiletin (Chen et al., 2015), ruthenium(II)-p-cymene 
complexes (Nowak-Sliwinska et al., 2015), myricetin and galangin 
(Huang et al., 2015), theasaponin E1 (Li et al., 2021), theaflavin-3, 
3'-digallate (Gao et al., 2016) in CAM ovarian adenocarcinoma 
xenograft. Ruthenium complexes showed significant decrease in 
the percentage of vascular network in breast cancer MDA-MB-231 
xenograft bearing CAM (Guedes et al., 2020). Wogonoside showed 
decrease new blood vessel formation in breast cancer MCF-7 cell 
line in CAM (Huang et al., 2016). Andrographolide, at a concen-
tration of 10-20 µM, was shown to inhibit breast cancer tumor 
growth and angiogenesis in CAM-bearing MDA-MB-231 cells (Fig. 
2C) (Dai et al., 2017). As observed in CAM as standalone model 

for angiogenesis study, amongst the several methods of chick 
embryo culture, window method has been the most commonly 
employed method for studies involving CAM tumor xenografts. 
This was followed by boat method and very limited information 
about the other methods.

	
3.4. Method of test compound administration on CAM model

CAM angiogenesis assay involves the application of the com-
pounds to be evaluated onto the CAM. For this, the test compounds 
are generally loaded onto CAM surface using certain materials 
that can aid to localize and slowly but efficiently deliver the test 
compound into the underlying or surrounding CAM tissue. The 
commonly used materials in CAM standalone angiogenesis as-
say include sterile filter disc, gelatin sponge, coverslip, agarose, 
or matrigel. With sterile filter disc, the different concentrations 
of test compounds are generally loaded onto the disc by directly 
soaking it into the prepared test compound (Wang et al., 2015a). 

Xenografted tumor type and cell line Tissue/cell seeding density Time frame Outcome Method Reference
Alveolar rhabdomyosarcoma: RH30, 
CRL2061

1 × 106 cells in 30 µl Matrigel EDD8-EDD16 Solid tumors formed. Window (Pion et al., 2021)

Breast carcinoma: MDA-MB-231 2 × 106 cells in 20 μl medium (50% Matrigel) EDD7-EDD17 Xenografts established successfully. Window (Zuo et al., 2017)
Breast cancer: MDA-MB-231, breast can-
cer organotropic variants lung-metastatic 
(MDA-MB-231.LM2), bone-metastatic 
(MDA-MB-231.BoM) and brain-metastatic 
(MDA-MB-231.BRMS)

1 × 103 to 1 × 106 in 10 ul serum-free 
medium mixed with matrigel (1:1)

EDD9-EDD16 Displayed histological features (breast CSC 
markers CD44 & CD49f) similar to mice xeno-
grafts,

Window (Pinto et al., 2020)

Burkitt lymphoma: BL2B95 1 × 106 cells in 25 μl in BL medium mixed 
with Matrigel (1:1)

EDD10-EDD17 Xenografts with high degree of cellular, molecu-
lar & proliferative concord with human disease.

Window (Klingenberg et al., 
2014)

Chondrosarcoma cell line: SW1353 1 × 106 cells in 100 μl Matrigel EDD9-EDD16 Key features & IHC characteristics of native 
sarcoma tumors observed.

Window (Sys et al., 2013)

Circulating cancer stem cells Tumorspheres (diameter >50 µm) mixed 
with matrigel (total volume of 20 µl)

EDD8-EDD16 Recapitulate aggressiveness & proliferation 
capacity of native tumor.

window (Pizon et al., 2022)

Colorectal carcinoma: RKO 2 × 106 cells in 25 μl serum-free DMEM EDD15-EDD17 Xenografts (4-8 mm size) exhibited hallmarks of 
corresponding human specimens.

Window (Crespo and Casar, 
2016)

Colorectal carcinoma: HCT116 0.5 × 106 cells in 25 μl serum-free DMEM EDD15-EDD17 Xenografts (4-8 mm size) exhibited hallmarks of 
corresponding human specimens.

Window (Crespo and Casar, 
2016)

Canine osteosarcoma: D17 4 × 106 in 15 μl of medium mixed with 
Matrigel (1:5)

EDD9-EDD14.5 Solid xenograft formed with induced angiogen-
esis.

Boat (Ademi et al., 2021)

Canine oral melanoma: 17CM98 6 × 106 in 15 μl of medium mixed with 
Matrigel (1:5)

EDD9-EDD14.5 Solid xenograft formed with induced angiogen-
esis.

Boat (Ademi et al., 2021)

Colorectal: HCT 116 3 × 105 cells in 20 µl Matrigel (1:1) EDD9-EDD16 Viable tumors formed with feeder CAM vessels & 
various hypoxic zones.

Boat (Harper et al., 2021)

Cutaneous T-cell Lymphomas: MyLa, SeAx 1 × 106 cells in 25 µl RPMI 1640 EDD10-EDD17 Large 100-200 mg tumors formed. Window (Karagianni et al., 
2022)

Diffuse intrinsic pontine glioma: DIP-
GIV (H3.1K27M mutated), DIPGXIIIp 
(H3.3K27M mutated)

1 × 106 cells in 10 μl Matrigel EDD9-EDD16 Infiltrative & diffuse invasion behavior, showed 
positive H3K27M mutation similar to those in 
rodent.

Boat (Power et al., 2022)

Epidermoid carcinoma: Hep3 0.4 × 106 cells in 25 μl serum-free DMEM EDD15-EDD17 Xenografts (4-8 mm size) exhibited hallmarks of 
corresponding human specimens.

Window (Crespo and Casar, 
2016)

Embryonal rhabdomyosarcoma: RD, 
TE671

1 × 106 cells in 30 µl Matrigel EDD8-EDD16 Solid xenografts formed with induced CAM 
angiogenesis.

Window (Pion et al., 2021)

Esophageal adenocarcinoma: OE19 1 × 106 cells in 20 µl medium EDD7-EDD14 Xenografts of OE19 comparable to those in 
mouse.

Window (Janser et al., 2019)

Fresh sarcoma-derived tumor tissues 106 cells in 100 μl Matrigel EDD9-EDD16 Vascularized xenografts exhibited key features 
of native sarcoma tumors.

Window (Sys et al., 2013)

Fibrosarcoma: HT-1080 3 × 105 cells in 20 µl Matrigel (1:1) EDD9-EDD16 Xenografts with feeder CAM vessels & various 
hypoxic zones.

Boat (Harper et al., 2021)

Fibrosarcom: HT-1080 0.5 × 106 cells in 25 μl serum-free DMEM EDD15-EDD17 Xenografts (4-8 mm size) exhibited hallmarks of 
corresponding human specimens.

Window (Crespo and Casar, 
2016)

Glioblastoma: U87 0.2 × 106 cells in 25 μl serum-free DMEM EDD15-EDD17 Xenografts (4-8 mm size) exhibited hallmarks of 
corresponding human specimens.

Window (Crespo and Casar, 
2016)

Glioblastoma: U87 1 × 106 cells in 20 µl DMEN mixed with type 
I rat tail collagen (1:1)

EDD9-EDD12 Xenografts exhibited angiogenesis in spoked-
wheel pattern.

Window (Kavaliauskaité et al., 
2017)

Glioblastoma: U87 4 × 106 in 15 μl of medium EDD9-EDD14.5 Xenograft with angiogenesis. Boat (Ademi et al., 2021)
Glioblastoma: U87MG 6.0 × 105 cells in 40 μl ice-cold Matrigel EDD11-EDD14 Presence of necrotic area. Window (Mansur et al., 2022)

Table 3 (PART 1/2)

Representative studies of tumor xenografts generated in chick CAM models

(Continued on the next page)
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The size of the disc employed ranges from 2 mm (da Costa et 
al., 2015) to 5 mm (Wang et al., 2015a) in diameter. Similarly, for 
gelatin sponges (GS), implants of desired dimensions (example 1 
mm3 size) are presoaked in different test compound and implanted 
onto CAM (Shah et al., 2018) or the sponges are placed onto CAM 
and the test compounds are pipetted onto it (Ribatti et al., 1997). 
GS have the benefit of being biocompatible or well tolerated by the 
embryos (Ribatti et al., 1997). In addition, it adheres firmly to the 
CAM surface at the application site. In the case of coverslips, the 
test compounds are generally applied onto the coverslip, air-dried 
and placed onto CAM surface (Kim et al., 2021). In terms of the 
size, sterile glass coverslip of 1 mm2 are commonly used (Li et al., 
2016). Other methods include mixing of the test compounds with 
Matrigel or preparation in 1.2% agarose which could be directly 
applied onto the CAM surface (Lee et al., 2017) or incorporated into 
disc which could be placed onto CAM (Samad et al., 2018). Based 
on articles reviewed in our studies, sterile filter disc is the most 

commonly employed material in the evaluation of the angiogenic 
property of novel compounds. 

For efficient implantation of tumor cell lines onto CAM surface 
at a localized area, similar support materials as in CAM standalone 
angiogenesis assay have been used to load tumor cells onto CAM. 
According to review of literature in our study, Matrigel is the most 
commonly employed material for tumor cell implantation on CAM. 
With Matrigel, the cells to be implanted onto CAM are suspended 
into culture media mixed with Matrigel in different ratios (Zuo et 
al., 2017). Matrigel as a cell carrier provides the ease to continu-
ously visualize the test site (Lokman et al., 2012). Silicon rings are 
also being commonly employed to keep the cells together on CAM 
surface (Kim et al., 2021; Zuo et al., 2017). The inner diameter of 
the silicon ring could range from 6 mm (Zuo et al., 2017) to 9 mm 
(Kim et al., 2021).

In CAM tumor xenograft models, the screening of antiangio-
genic compounds is majorly performed by co-incubation of the 

[i] Abbreviations: BL-Burkitt lymphoma, BM-basement membrane, CSC-cancer stem cells, DIPG-Diffuse intrinsic pontine glioma, ECM-extracellular matrix, HCC-Hepatocellular carcinoma, IHC-Immuno-
histochemical, MPM-Malignant pleural mesothelioma, MV-microvascular endothelial.

Xenografted tumor type and cell line Tissue/cell seeding density Time frame Outcome Method Reference
Hepatoma: HuH7 5 × 106 cells in 20 µl Matrigel EDD7-EDD14 Xenografts of volume, 0.075 cm3 or 0.69 

cm2 obtained.
window (Eckrich et al., 2020)

Hepatocellular carcinoma: HUH7, PLC/
PRF/5

5 x 105 to 2 x 106 cells in 40 µl of PBS++ 
and 20 µl of BM mixture

EDD10-EDD17 Vascularized xenografts & histological resem-
bling those in mouse & undifferentiated HCC.

Window (Li et al., 2015)

Lung cancer: A549 3 × 105 cells in 20 µl Matrigel (1:1) EDD9-EDD16 Viable xenografts with feeder CAM vessels & 
various hypoxic zones.

Boat (Harper et al., 2021)

Malignant pleural mesothelioma (MPM) Human tissue samples (fresh) EDD7-EDD11 Xenografts with spoked wheel pattern of CAM 
arteries; exhibited biphasic features of metastat-
ic human MPM cells.

Window (Mîndrilă et al., 2017)

Melanoma: A375, SKMEL2 1 × 106 cells in 25 μl serum-free DMEM EDD15-EDD17 Xenografts (4-8 mm size) exhibited hallmarks of 
corresponding human specimens.

Window (Crespo and Casar, 
2016)

Melanoma: C8161 1 × 105 cells in 30 μl PBS EDD7-EDD14 Vascularized tumor xenografts formed. Square 
Petri dish/
boat

(Mangir et al., 2018)

Melanoma: A375 1 × 104 cells in 2 µl DMEM EDD10-EDD17 Compact xenografts with mean surface area of 
~1.5 to 2.2 mm2.

Window (Avram et al., 2017)

Musculoskeletal system tumor (28 
samples)

Samples of size 1-3 mm diameter EDD9-EDD17 Tumor xenografts retained original tumor char-
acteristics.

Window (Sys et al., 2012)

Multiple myeloma: OPM-2eGFP, RP-
MI-8226eGFP spheroids

250,000 cells/spheroid with human 
bone-marrow mesenchymal cells (50,000 
cells/ spheroid) in 30 µl drop of DMEM 
medium with collagen matrix (1:10)

EDD9-EDD14 Xenografts with angiogenesis in spoked-wheel 
pattern.

Boat (Martowicz et al., 
2015)

Neuroblastoma: UKF-NB-4 5 × 104 cells in 25 µl medium EDD10-EDD14 UKF-NB-4 xenografts successfully established. Boat (Merlos Rodrigo et 
al., 2021)

Neuroblastoma: UKF-NB-4 5 × 106 cells in 25 µl medium. EDD10-EDD17 UKF-NB-4 xenografts successfully established. Window (Merlos Rodrigo et 
al., 2021)

Neuroblastoma: IMR32, BE2C 2 × 106 in 5 μl of DMEM EDD7-EDD14 Tumor xenografts of 1-5 mm size formed. Window (Swadi et al., 2018)
Osteosarcoma: HOS, MG63, HOS 143B, 
CAL-72, U2OS, MNNG-HOS, Saos-2, 
UMR-106

1 × 106 cells in 40 μl of medium mixed with 
matrix (1:1)

EDD9-EDD16 Solid xenografts comparable to those in rat. Window (Kunz et al., 2019)

Osteosarcoma cells: Saos-2 1 × 106 cells in 100 μl Matrigel EDD9-EDD16 Vascularized xenografts exhibited key features 
of native sarcoma tumors.

Window (Sys et al., 2013)

Ovarian cancer: OVCAR-8-GFP 2 × 106 cells in RPMI 1640 medium EDD10-EDD Xenografts masses exhibited close resemblance 
to cancer patient tumor with ECM, stromal cells 
& extensive vasculature.

Window (Vu et al., 2018)

Pancreatic: PANC-1 3 × 105 cells in 20 µl Matrigel (1:1) EDD9-EDD16 Viable xenografts with feeder CAM vessels & 
various hypoxic zones.

Boat (Harper et al., 2021)

Prostate carcinoma: PC3 1 × 106 cells in 25 μl serum-free DMEM EDD15-EDD17 Xenografts (4-8 mm size) exhibited hallmarks of 
corresponding human specimens.

Window (Crespo and Casar, 
2016)

Renal: Caki-1 3 × 105 cells in 20 µl Matrigel (1:1) EDD9-EDD16 Viable xenografts with feeder CAM vessels & 
various hypoxic zones.

Boat (Harper et al., 2021)

Prostate cancer PC3 1 × 105 cells in 30 μl PBS EDD7-EDD14 Vascularized tumor xenografts formed. Square 
Petri dish/
boat

(Mangir et al., 2018)

Retinoblastoma: Y79 cells, eGFP Y79 2 × 106 cells in medium with Matrigel EDD7-EDD14 Xenograft formed Successfully. Window (Nair et al., 2022)

Table 3 (PART 2/2)

Representative studies of tumor xenografts generated in chick CAM models
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test compound along with tumor cells at the time of xenografting 
(Ma et al., 2015b). Another method employed for delivery of test 
compound to CAM tumor xenografts is the intravenous method 
(Nowak-Sliwinska et al., 2015). Intravenous method has been 
employed in a limited way in preclinical CAM tumor models but is 
clinically most relevant.

			 
4. Chick CAM as a model for antiangiogenic nanoformula-
tion screening

Nanoparticles (NPs) in therapeutics have been attributed with 
several beneficial properties such as high biocompatibility, inertness, 
stability, efficient delivery to the target site, ability to integrate multiple 
therapeutic entities in a single NP formulation, enhanced imaging etc. 
(Garrier et al., 2014). NPs employed for therapeutics based on the 
physical and chemical properties can be broadly divided into carbon, 
metal, ceramic (inorganic nonmetallic solids), lipid, polymeric and 

semiconductor based (Khan et al., 2019) (Fig. 3A). Carbon-based 
NPs for biological delivery and therapeutics include carbon nano-
tubes, carbon nano-onions, fullerenes, graphene and its derivatives, 
graphene oxide, carbon-based quantum dots, and nanodiamonds 
(Mahor et al., 2021; Patel et al., 2019). Most frequently used metal-
based NPs for therapeutics include copper, gold, palladium, silver, 
titanium, and zinc NPs (Chandrakala et al., 2022). Ceramic-based 
NPs for therapeutics include alumina, calcium phosphate, calcium 
carbonate, calcium sulfate, titania-based, tricalcium phosphate, 
hydroxyapatite, and bioactive glass ceramics (Kaushik, 2021). Poly-
meric NPs could be of natural or synthetic origin. Most commonly 
employed polymers for diagnostics, medical and pharmaceutical 
arena or biomedical application include synthetic polyethylene 
glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), and polylactic 
acid (PLA) (Kaushik, 2021). Lipid-based NPs include liposomes, 
nanostructured lipid carriers, solid lipid NPs, and self-emulsifying 
drug-delivery systems (García-Pinel et al., 2019). Semiconductor 

Fig. 3. Representative images of nanoparticles and their antiangiogenic activity in chick CAM. (A) Schematic representation of the different types of 
nanocarriers or NPs for drug delivery. Adapted from (Yaqoob et al., 2020). (B) TEM image of NDAT (a); antiangiogenic activity of DAT and NDAT in bFGF-
induced angiogenesis in CAM as a standalone model (b). Adapted from (Li et al., 2019). (C) TEM images of silver (Ag) nanocomposite at 50 nm (a) & at 
5 nm (b); images of CAM assay: untreated (c), treated with HeLa cells (d), treated with 10 µg/ml DOX (e), treatment with different concentrations of Ag 
nanocomposite in CAM alone (f-h) and CAM inoculated with HeLa cells (i-k). Graphical representation of angiogenesis inhibition by Ag nanocomposite (l). 
Adapted from (Pasha et al., 2022). All images are licensed under CC BY. Abbreviations: CAM, chorioallantoic membrane; DAT, diamino propane tetraiodo-
thyroacetic acid; DOX, doxorubicin; NDAT, DAT-conjugated PLGA nanoparticles; PLGA, poly (lactic-co-glycolic acid); TEM, transmission electron microscopy.
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Xenografted Human tumor 
cell line type

Antiangiogenic  
compounds Nature of compounds Treatment concentration Effects on tumor angiogenesis Reference

Glioblastoma: U87 Tetrandrine Bis-benzylisoquinoline 
alkaloid

8 mg/ml (60 µl) in DMEM medium ↓ ratio of vascular & CAM area & MVD. (Ma et al., 2015b)

Ovarian adenocarcinoma: 
A2780

Nobiletin Methoxyflavone 20 μM in 0.1 ml media + 0.1 Matrigel. ↓ BV development & tumor volume. (Chen et al., 2015)

Ovarian adenocarcinoma: 
A2780 cells as spheroid

Ruthenium(II)-p-cymene 
complexes

Organometallic 25-50 μM (80 μl) in 80 μl DMSO + 0.9% 
NaCl daily from EDD10-13

↓ angiogenesis & xenograft growth. (Nowak-Sliwinska et 
al., 2015)

Ovarian adenocarcinoma: 
OVCAR-3

Myricetin Hexahydroxyflavone 20 μM in 20 µl medium + 80 µl Matrigel ↓ formation of BV. (Huang et al., 2015)

Ovarian adenocarcinoma: 
OVCAR-3

Galangin Flavonol 40 μM in 20 µl medium + 80 µl Matrigel ↓ reduced formation of BV. (Huang et al., 2015)

Ovarian adenocarcinoma: 
OVCAR-3

Theasaponin E1 Oleanane-type saponin 4 µM in serum-free medium + Matrigel 
(1:4 (v/v)

↓ number & density of BV. (Li et al., 2021)

Ovarian adenocarcinoma: 
OVCAR-3

Theaflavin-3, 3’-digallate Black tea phenolic 25 µM in 20 µl medium + 80 µl Matrigel ↓ BV development. (Gao et al., 2016)

Breast cancer: MDA-MB-231 Ruthenium complexes Heterobimetallic 0.3-0.5 μM (50 μl) in DMSO + Hank’s buffer 
at pH 7.4

↓ percentage of vascular network. (Guedes et al., 2020)

Breast cancer: MCF-7 Wogonoside Flavonoid 50-200 ng/CAM saturated on sterilized 
filter paper disks (5 mm × 5 mm)

↓ new BV formation. (Huang et al., 2016)

Table 4

Representative studies of chick CAM tumors as model for screening antiangiogenic compounds

[i] Abbreviations: BV-Blood vessel, C-Compound; MVD-micro-vessel density.

NPs such as quantum dots have been commonly used as probes 
in cells, tissues, or for membrane receptors (Walkey et al., 2009).

Several physicochemical parameters of NPs including size, shape, 
surface chemistry and dosage, play pivotal roles in determining their 
suitability as effective and efficient therapeutics or drug delivery 
systems. Incidentally, it is now emerging that the biocompatibility and 
inertness of NPs though largely depend upon the chemical nature of 
the formulations, their particle size is one of the key factor that may 
influence the biological behavior of NP and this is now emerging to 
be the main problem associated with their unpredictable behaviors 
occasionally leading to nanotoxicity. NPs in the size range of 100-
200 nm have good accumulation and retention rate at the tumor 
site but lesser penetrating ability within the tumor (Xu et al., 2023). 
NPs in the size range of <70 nm have been considered to be most 
effective therapeutics or delivery system (Chauhan et al., 2012; Jiang 
et al., 2008), however, studies have shown NPs with sizes <70 nm 
to cause side effects (Mittal and Banerjee, 2016; Pan et al., 2009). 
Additionally, certain NP size below the range of 10 nm can easily 
be eliminated as they have lower retention time within physiological 
system (Hoshyar et al., 2016). These limitations in several instances 
have been overcome by techniques including green chemistry method 
or surface modifications. Gold nanoparticles (AuNPs) reported to 
be toxic (Pan et al., 2009) when synthesized via a green chemistry 
approach using Ganoderma spp., were determined to be biocom-
patible. Surface coating of IONPs sized 5 and 30 nm with polymers 
such as PEG and carbohydrates such as dextran were observed to 
reduce porcine endothelial cell cytotoxicity (Yu et al., 2012). In light 
of the aforementioned research findings, it is imperative to assess 
the potential toxicity of NPs alongside evaluating their efficiency 
and effectiveness in drug delivery. Given the extensive synthesis of 
diverse nanoparticles for medical applications, there is a pressing 
need for a comprehensive toxicity evaluation system with economi-
cal and quick read out. CAM models have demonstrated similarities 
to murine models in preclinical oncological studies and, in addition, 
offer economic advantages over murine models. To enhance the 
efficiency of nanotoxicity assessment, a parallel evaluation using 
a CAM system could be conducted, offering a cost-effective and 
expeditious method with reliable results. 

			 

4.1. Chick CAM standalone as an antiangiogenic nanotherapeutics 
model 

Chick CAM standalone has proved to be a beneficial model 
for evaluation of anti-angiogenic properties of nanoformulations 
(Table 5). Silver NPs (AgNPs) synthesize using Saliva officinalis 
extract has shown significant dose-dependent reduction in hemo-
globin content, number and length of the blood vessels in CAM 
standalone angiogenesis assay compared to control (Baharara et 
al., 2014). Similarly, reduced angiogenic activity was observed in 
CAM with zinc oxide NPs synthesize using Hyssops officinalis L. 
extract (Fig. 3B) (Mohammad et al., 2019). AgNPs coated with palm 
pollen extract (Homayouni-Tabrizi et al., 2019), gold NPs (AuNPs) 
conjugated with KATWLPPR (Pedrosa et al., 2017), molybdenum 
trioxide (Indrakumar and Korrapati, 2020), and magnetoliposomes 
loaded with thermosensitive betulinic acid (BA) (Farcas et al., 2020) 
are other examples. Apart from CAM, yolk sac membrane (YSM) of 
the chick has been demonstrated to be beneficial for the evaluation 
of the angiogenic properties of NPs. The antiangiogenic activity of 
AuNPs conjugated with antiangiogenic peptides were exhibited 
in chick YSM (Roma-Rodrigues et al., 2016). Using YSM (EDD3 to 
EDD5), PLGA NPs loaded with celecoxib were determined to exhibit 
antiangiogenic activity such as decreased blood vessels more sig-
nificantly compared to the positive (NaCl) and negative (arginine) 
controls (Alonso-González et al., 2022). The antiangiogenic activi-
ties exhibited in the aforementioned studies in CAM angiogenesis 
model were depicted as decrease in the number and length of CAM 
blood vessels, thickening of the blood vessel, capillary density, and 
inhibition of new blood vessel formation. The study period ranged 
from embryonic development day 3 to 12.

	
4.2. CAM tumor xenograft as antiangiogenic nanotherapeutics 
model

Tumor-bearing CAMs have not only proven to be an ideal model 
for screening antineoplastic agents but have also been employed 
for the screening of NPs and formulations for application in anti-
angiogenic therapeutics (Table 5). Ag-NPs loaded with Aspergillus 
niger have been demonstrated to exhibit the antiangiogenic activity 
of reduced intercapillary network and blood vessel formation dose-
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dependently in CAM-bearing HeLa xenograft model compared to 
negative (PBS) and positive (doxorubicin DOX) control without NPs 
(Fig. 3C) (Pasha et al., 2022). Similarly, the antiangiogenic activity 
of drugs encapsulated with NPs, such as tetraidothyroacetic acid 
(tetrac) covalently linked to PLGA (Tetrac NP), have been shown 
to inhibit the formation of new blood vessels in CAM-bearing xe-
nografts of H1299 (Mousa et al., 2012), human RCC (Yalcin et al., 
2009), h-MTC (Yalcin et al., 2010c), and FTC-236 tumor matrigel 
plug (Yalcin et al., 2010b). In addition, reduced hemoglobin con-
tent, elevated antiangiogenic thrombospondin 1 gene expression 
(Yalcin et al., 2010c) and subsequent reduction in tumor size 
compared to control and tetrac only (Mousa et al., 2012; Yalcin et 
al., 2009) as antiangiogenic characters on CAM tumor xenografts. 
These studies indicate the role of NP in the efficient delivery of 
antiangiogenic drugs that can be effectively examined by CAM 
tumor xenograft model.

			 
4.3. Method of antiangiogenic nanoformulation administration 
in CAM model

The screening of nanoformulations as anti-angiogenic thera-
peutics using the CAM standalone model involves the delivery/
application of test compounds employing similar techniques 
used in the screening of free test compounds (minus NPs) in CAM 
standalone angiogenic assay. The multi-walled nanotubes loaded 
with pachymic acid extract were applied to the CAM surface via 5 
mm Waterman sterile filter paper (Ma et al., 2015a). Similarly, arte-
misinin and dexamethasone‐loaded nanodispersion (Ponnusamy 
et al., 2019) and gold NPs capped with PEG 9000 functionalized 
with camptothecin (AuNPs-PG9-CPT) (Sadalage et al., 2021) were 
applied onto CAM via filter paper disc. For the evaluation of the 

NP type NP size Dose Model type
Experimental  
duration Outcome Reference

AgNP prepared using Saliva officina-
lis extract

1 – 40 nm 50, 100 & 200 µg/ml CAM alone 8th – 12th day ↓ number & length of CAM BV; 
↓ haemoglobin content dose 
dependently

(Baharara et al., 2014)

Gold NPs conjugated with KATWLPPR, 
(AuNPs@antiP)

Average diameter 
of 13 ± 2 nm

16.4 nM CAM alone 3rd - 4th day ↓ new arteriole formation by 73% (Pedrosa et al., 2017)

Gold NPs capped with polyethylene glycol 
9000 & functionalized with camptothecin 
(AuNPs-PG9-CPT)

~180.5 nm 30 & 40 mg/ml 
(CPT=0.5mM)

CAM alone 4th – 5th day 
(24 h)

↓ BV branching (Sadalage et al., 2021)

Artemisinin and dexamethasone‐loaded 
nanodispersion

12 – 26 nm 50 µg CAM alone 6th – 7th day ↓ branching & pre-existed BV (Ponnusamy et al., 2019)

AuNPs conjugated with antiangiogenic 
peptides (P3–AuNPs).

13 ± 2 nm 40 μl (peptide conc.: 
0.01 pmol/μl)

CAM alone 3rd - 4th day ↓ formation of new arterioles (Roma-Rodrigues et al., 
2016)

Magnetoliposomes loaded with thermo-
sensitive BA

&#60; 200 nm 25 µM corresponding 
to BA conc.

CAM alone 7th – 11th day ↓ capillary density; hyperthermic 
pre-treatment samples caused 
embryo death

(Farcas et al., 2020)

Diclofenac incorporated PLGA NPs Mean size of 
150 nm

40 µl CAM alone 4th – 5th day ↓ BV density (Esteruelas et al., 2022)

Ag-NPs prepared using Aspergillus niger 8 to 55 nm 100 µl of 5, 10, & 15 
µg/ml

CAM bearing HeLa 
cells

11th – 14th day ↓ intercapillary network and BV 
formation dose dependently

(Pasha et al., 2022)

Tetrac covalently linked to PLGA NP 
(Tetrac NP)

Average diameter 
of 200 nm

1 μg/CAM CAM bearing h-RCC 
xenograft

7th – 14th day ↓ angiogenesis & subsequent 
reduction in tumor tumor growth.

(Yalcin et al., 2009)

Tetrac covalently link to PLGA NP  
(Tetrac NP)

Average diameter 
of 200 nm

1 μg/CAM CAM bearing h-MTC 
xenograft

7th – 14th day ↓ haemoglobin content of 
xenograft; induced antiangio-
genic thrombospondin 1 gene 
expression

(Yalcin et al., 2010c)

Tetrac covalently link to PLGA NP  
(Tetrac NP)

Average diameter 
of 200 nm

1 μg/CAM CAM bearing FTC-236 
tumor matrigel plug

7th – 14th day ↓tumor mediated angiogenesis (Yalcin et al., 2010b)

Table 5

NP and formulations with anti-angiogenic activity exhibited in chick CAM

[i] Abbreviations: BA-Betulinic Acid, BV-Blood vessels, DAT-Diamino propane tetraiodothyroacetic acid, EC-Endothelial cells, FTC-236-Human follicular thyroid carcinoma, h-MTC-Human medullary thyroid 
carcinoma, h-RCC-human renal cell carcinoma, NP-Nanoparticles, PLGA-poly (lactic-co-glycolic acid), tetrac-Tetraiodothyroacetic acid, ↓-decreased/reduced.

antiangiogenic therapeutic of AgNPs in CAM, the AgNPs were 
loaded onto GS, which were placed on the CAM surface (Baharara 
et al., 2014). The suitability of peptide-conjugated AuNPs as anti-
angiogenic therapeutics in CAM was determined by placing within 
transparent plastic O-rings (6 mm diameter on the inside) placed 
on CAM (Pedrosa et al., 2017). Likewise, AuNPs conjugated with 
antiangiogenic peptides (P3–AuNPs) (Roma-Rodrigues et al., 2016) 
and magnetoliposomes loaded with thermosensitive BA (Farcas 
et al., 2020) were placed onto CAM within silicon/plastic O-rings 
placed on the vascularized CAM surface. 

The antiangiogenic nanoformulation administration in CAM 
tumor xenograft model engages a similar technique as that of test 
compound in native form. Tetrac NPs at 1.0 μg targeted against 
renal carcinoma tumor angiogenesis growth were co-incubated 
along with 1×106 renal carcinoma cells in the medium mix with 
Matrigel (1:1 ratio) and xenografted on 7-day-old chick embryo 
CAM (Yalcin et al., 2009). Similarly, tetrac NPs were implanted along 
with respective tumor cells at the time of implantation on 7-day-old 
chick embryo CAM (Yalcin et al., 2010c). All these methods were 
effective in nanoformulation administration in CAM.

			 
5. Comparison of CAM with other models used in antian-
giogenic nanoformulation screening

There are several nanoformulations reported to have antian-
giogenic properties. According to a review of literature of past 10 
years using PubMed search driver with keyword, ‘anti-angiogenesis 
nanoparticles’, 139 articles with free full text solely concerned with 
studies on antiangiogenic nanoformulations were recorded as on 
August 2023. Out of 139 experimental outputs reported, 97 of the 
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studies were conducted in murine models, 71 in 2D models, 17 in 
CAM models, 4 in rabbit, 2 in zebrafish, and 1 in 3D model. Rodents 
and 2D cultures were the most commonly utilized angiogenic mod-
els for the evaluation of antiangiogenic nanoformulation delivery 
in biomedical research. 2D models comprised majorly of HUVECs 
(Babae et al., 2014; Chuang et al., 2019; Zhang et al., 2021; Zou 
et al., 2021), followed by other ECs such as: human endothelial 
somatic cell (EA.hy926) (Choi et al., 2020; Lu et al., 2020; Xing et 
al., 2019), human retinal vascular ECs (hRVECs) and RF/6A (Sun 
et al., 2023), telomerase-immortalized human microvascular 
endothelium (TIME) (Wang et al., 2022a), primary human dermal 
microvascular ECs (Sheibani et al., 2019), human retinal ECs 
(HRECs) (Shmueli et al., 2013), human aortic ECs (HAEC) (Zhang 
et al., 2017), rat retinal capillary ECs (Zeng et al., 2019), and tumor 
cell lines including PC-3 (Son et al., 2017) and PCa cells (Wang et 
al., 2022b). Irrespective of the rationale behind engaging several 
or varied preclinical models for assessment of novel drug efficacy 
(Alphandéry, 2018; Shah et al., 2019), only 10 out of 139 studies 
have engaged CAM and any other angiogenic model and can be 
useful to draw a comparison (Table 6).

Chick CAM has been in used for tissue growth purposes for 
hundred years but it remains underutilized for screening of anti-
angiogenic nanoformulations. Nevertheless, CAM has reestab-
lished itself as a well-defined angiogenic model as evident from 
a series of studies where it has been in used in conjunction with 
other similar assays (Table 6). Discussed here are few studies 
that have employed CAM model along with 2D models. Zinc oxide 
NPs prepared using Hyssops officinalis extracts at a concentration 
of 12 µg/ml downregulated the expression of the key angiogenic 
genes VEGF and VEGF-R in the MCF7 breast cancer cell line, and 
in CAM they exhibited their antiangiogenic activity by reducing the 
number and length of blood vessels (Mohammad et al., 2019). 
Similarly, electrostatically-conjugated bevacizumab-bearing dexa-
methasone-loaded poly (D,L-lactide-co-glycolide)/polyethylenimine 
NPs (eBev-DPPNs) exhibited antiangiogenic activity by decreased 
VEGF secretion in HUVEC and inhibited growth of new blood ves-
sels in CAM leading to a decreased in blood vascular density (Liu 
et al., 2019). Treatment of HUVECs with Mo polyoxometalates 
NPs (Mo POMs NPs) complex 3 at a concentration of 10 μg/ml 
exhibited interrupted sprouting or branching between tubes in 2D 
tube formation assay and significant inhibition of new blood vessel 
formation in CAM leading to reduction in the density or number of 
blood vessels (Zheng et al., 2014). Silver NPs coated with palm 
pollen extract (Ag-PP NPs) downregulated the expression of pro-

angiogenic genes VEGF and its receptor VEGFR in MCF7 cells, 
which corroborated with CAM assay result of significant reduction 
in the number and length of blood vessels (Homayouni-Tabrizi et 
al., 2019). Human breast cancer (MCF‐7) cells treated with silver 
NPs coated with palm pollen extract (Ag-PP NPs) at a dose of 40 
μM/ml for 10 h exhibited significant decrease in the expression 
of VEGF and VEGFR genes compared to the control. In the same 
study, antiangiogenic activity of Ag-PP NPs at a dose of 100 μM/
ml was demonstrated in CAM via reduction in vessel length and 
branching (Homayouni-Tabrizi et al., 2019). Docetaxel loaded NPs 
minus anti-FLT1 hexapeptide (DTX-loaded DBLaFLT1) treated HU-
VECs in tube formation assay exhibited significant decrease in the 
number of junctions, meshes, and master segments at a dose of 
50 µg/ml which correspondingly exhibited antiangiogenic activity 
in CAM via reduced number of blood vessels in tumor (Conte et 
al., 2019). Chondroitin sulfate conjugated to anti-Flt1-endostatin 2 
NP (CS-ES2-AF NP) treated EA.hy926 cells at 50, 100, or 200 μg/
ml exhibited dose-dependent suppression of their migration abil-
ity as well as inhibition of their tube formation ability at 200 μg/
ml. Further, treatment of CS-ES2-AF NP at a concentration of 10, 
25, or 50 μg/ml in CAM resulted in significant decrease in blood 
vessels in a dose-dependent manner (Xing et al., 2019). Gold NPs 
conjugated quercetin (Qu) (at 50 μm of Qu and 195 μm of Au) 
treated HUVECs exhibited decreased cell viability, and significant 
reduction in the migration, invasion, and tube formation activity 
compared to free Qu. In addition, VEGFR‐2 protein expression in 
HUVECs was significantly inhibited in comparison to free Qu. In 
the same study, investigation of anti-angiogenic property of Au 
NPs conjugated Qu in CAM exhibited anti-angiogenic activity of 
inhibiting new blood vessel formation (Balakrishnan et al., 2016).

Some studies showed employment of CAM model in addition 
to 2D and murine models. Cetuximab-loaded copper sulfide NPs 
(CuS-Ab NPs) at a concentration of 10 µg/ml inhibited the viability 
and migratory ability of HUVECs. Similar antiangiogenic activity 
was observed in CAM and 4T1 xenograft bearing murine model 
on treatment with CuS-Ab NPs exhibited by reduced new blood 
vessel formation or reduction in blood vessel density, respectively 
(Li et al., 2018). In another study, miRNA-7 loaded integrin-targeted 
biodegradable polymeric NPs exhibited antiangiogenic activity in 
HUVEC via reduction in cell viability, tube formation, 3D sprouting, 
and migration. In the same study, miRNA-7 loaded integrin-targeted 
biodegradable polymeric NPs demonstrated decreased vascular 
density between large blood vessels and reduced microvessel 
density or CD31 positive cells in CAM and subcutaneous neuro-

Types of NPs 2D models CAM Murine model Reference
Zinc oxide NPs prepared using Hyssops officinalis extracts Yes Yes (Mohammad et al., 2019)
Electrostatically-conjugated bevacizumab-bearing dexamethasone-loaded poly  
(D,L-lactide-co-glycolide)/polyethylenimine NPs (eBev-DPPNs)

Yes Yes (Liu et al., 2019)

Mo polyoxometalates NPs (Mo POMs NPs) complex 3 Yes Yes (Zheng et al., 2014)
Silver NPs coated with palm pollen extract (Ag-PP NPs) Yes Yes (Homayouni-Tabrizi et al., 2019)
Emodin-loaded magnesium silicate hollow nanocarriers (Emodin-MgSiO3) Yes Yes (Ren et al., 2014)
Docetaxel loaded NPs that do not bear anti-FLT1 hexapeptide (DTX-loaded DBLaFLT1) Yes Yes (Conte et al., 2019)
Chondroitin sulfate conjugated to anti-Flt1-endostatin 2 NP (CS-ES2-AF NP) Yes Yes (Xing et al., 2019)
Gold NPs conjugated quercetin Yes Yes (Balakrishnan et al., 2016)
Cetuximab loaded CuS NPs (CuS-Ab NPs) Yes Yes Yes (Li et al., 2018)
miRNA-7 loaded integrin-targeted biodegradable polymeric nanoparticles Yes Yes Yes (Babae et al., 2014)

Table 6

NPs reported to efficiently inhibit or deliver anti-angiogenic agents in different preclinical model systems

[i] Abbreviations: CAM-Chorioallantoic membrane, NP-Nanoparticles, 2D-Two-dimensional, 3D-Three-dimensional.

EA.hy
EA.hy
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blastoma (N2A) xenograft bearing mouse model, respectively 
(Babae et al., 2014).

The above studies clearly indicate strong analogy of CAM 
model to other fundamental angiogenesis models, thereby, their 
reproducibility and suitability as a model for the screening of 
antiangiogenic nanoformulations.

		
6. Practical illustration of chick CAM model to study an-
giogenesis and NPs as a therapeutic carrier

6.1. Chick embryo culture with CAM genesis
Out of several methods described in the literature, windowing, 

cling-wrap hammock and polystyrene boat are simple, sustain-
able and flexibly fit into the scope and requirements of any 
experimentation. To assess the advantages of one method over 
others, we have demonstrated and compared the developmental 
timeline and outcome of chick embryos for polystyrene weigh 
boat, windowing, and cling-wrap hammock method (Fig. 4A). After 
calibrating different conditions reported in literature, temperature 
of 37°C ± 1 and relative humidity (RH) ≥80% ± 10 was observed to 

be crucial for normal development of blood vasculature as well 
as chick embryo. Both qualitative and semi-quantitative observa-
tions of images captured indicate CAM to be highly vascularized, 
transparent, easy to visualize with or without microscope. In ad-
dition, temporal and spatial patterns of blood vessel formation 
and distribution remain more or less constant among different 
embryos. CAM exhibited similar pattern of vascularization across 
the cultures, with no distinct morphological abnormality in embryos 
indicating the suitability of the set methods/conditions adopted. 
Survivorship curve plotted for three widely used techniques of ex 
ovo or in ovo culture at optimal temperature and humidity clearly 
indicated selective advantage of windowing and polystyrene boat 
method over cling-wrap hammock in a climate-controlled chamber 
(Fig. 4B). Of the three culture methods, polystyrene boat method 
was observed to have a significant advantage over the other two 
methods in, a) survivorship over 14-days (only against cling-wrap 
hammock method), b) larger area of CAM for manipulation (Fig. 
4C), c) easy to capture image under dissecting microscope. The 
available surface area for manipulation in boat method was de-
termined to be ~79.2cm2, hammock ~28.27cm2, and windowing 

Fig. 4. Chick embryo culture techniques. (A) Timeline of chick embryo development and CAM vasculature. All the systems, window (a), hammock (b) and 
boat (c) exhibit similar patterns of CAM angiogenesis with differential survival in a climate-controlled humidity chamber; embryos dissected (d) from these 
indicate that HH (Hamburger-Hamilton) developmental milestones are attained in a temporal fashion. All embryos appear healthy; interestingly unhealthy 
embryos die overtime. (B) Relative survivorship comparison of the three models of CAM culture technique. (B a-c) Representative images of developing 
chick embryo on EDD11 of embryogenesis in (a) window method, (b) boat method and (c) hammock method; (d) Kaplan-Meier survivorship curve of 
embryos grown using these methods; (e) graphical representation of the differential survival percentage at the end of EDD14; n=10 for each method. Data 
is represented as mean ± standard deviation. For comparison of means, one-way ANOVA followed by post-hoc Tukey's multiple comparison analysis was 
performed. *p<0.05 indicates statistically significant differences. (C) Chick CAM surface area for experimental manipulation: (a) window method showing 
dimensions for experimental manipulation and visualization; similarly, (b) hammock and (c) boat methods are indicated. The dimensions indicated here 
are at their maximum limit as per our study. Images: Nikon 5100 DSLR camera.
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~14cm2. In future, this setup can be manipulated to perform live 
fluorescence imaging (Nowak-Sliwinska et al., 2010; Smith et al., 
2007) without needing many attachments.

				  
6.2. Chick CAM as an anti-angiogenic model

Angiogenesis is an important hallmark of tumor cells, a req-
uisite route for gases and nutrient supply as well as metastasis. 
Targeting angiogenesis is considered to be a potentially effective 
approach for the treatment of cancer (Zhao and Adjei, 2015). 
To substantiate chick CAM as an ideal anti-angiogenic model, 
doxorubicin (DOX) (Uvez et al., 2020) and Irinotecan (IRT) (Bocci 
et al., 2008) previously reported to have an anti-angiogenic prop-
erty were used for demonstration. Qualitatively CAM exhibited 
vessel disorganization, bending or looping, in response to dif-
ferent dosages of DOX and IRT concentrations. Quantitatively, 
around the vicinity (within 1.5 cm × 1.5 cm area) of DOX and IRT 
administration, CAM exhibited lesser vascular density compared 
to vehicle (1×PBS) treated sites which was determined by mea-
suring important parameters like the number of nodes, meshes 
and total branching length using angiogenesis analyzer tool 
add-on to ImageJ version 1.52a, (National Institute of Health, 
Bethesda, MD, US). A reduction in blood vascular density com-
pared to vehicle (1×PBS) treated sites was observed, indicating 

Fig. 5. Anti-angiogenic properties of DOX and IRT at various dos-
ages. (A) Photographic representation (upper row) and quantitative 
analysis (lower row) of anti-angiogenic properties of DOX at various 
dosages (0.2, 0.4 & 0.6 µM) and control (1×PBS). Treatment was 
given on EDD9 and incubated for 48 h. Images captured through 
Nikon DSLR were analyzed for macrovascular organization by quan-
tifying nodes, meshes and the total length of blood vessels around 
the site of drug administration using the ImageJ version 1.52a 
angiogenesis analyzer plugin. (B) Photographic representation 
(upper row) and quantitative analysis (lower row) of anti-angiogenic 
properties of Nimbolide at various dosages (0.2, 0.5 & 0.8 µM) and 
control (1×PBS). Treatment was given on EDD9 and incubated for 
48 h. Images captured through Nikon DSLR were analyzed for the 
macrovascular organization by quantifying nodes, meshes and the 
total length of blood vessels around the site of drug administra-
tion using the ImageJ version 1.52a angiogenesis analyzer plugin 
(n=5). Statistically, analysis indicates a significant decrease in the 
nodes in the treated compared to control. Overall dose-dependent 
reduction in the nodes, meshes and length of blood vessels was 
observed. Statistical analysis was done using GraphPad Prism-5 
software, San Diego, CA. All the data are represented as mean ± 
standard deviation. For comparison of means, one-way ANOVA 
followed by post-hoc Tukey's multiple comparison analysis was 
performed. *p<0.05, **p<0.01, ***p<0.001 indicate statistically 
significant difference.

the antiangiogenic potential of the administered dose of DOX 
(Fig. 5A) and IRT (Fig. 5B).

				  
6.3. CAM tumor xenograft growth and angiogenesis assessment

Extensive vascular bed and innate immunodeficiency till 
EDD14 provide a conducive environment for engraftment of hu-
man tumor cell lines. Corresponding to earlier work (Kunz et al., 
2019), implantation of U87 GBM cells at a density of 7.5 x 105 
to 1.5 x 106 on EDD8/9 consistently gave rise to highly vascular 
tumors of sizes ranging from 0.75 – 4.2 mm3. Implantation on 
EDD7 were often associated with reduced tumor growth success 
and increased mortality of the embryos. On EDD7, CAM is usually 
small and does not grow sufficiently beyond amniotic depression, 
therefore tumor loaded gelatin sponge (GS) often depressed and 
lead to death of the embryo. Tumor cells implanted on 10th or 
11th day resulted in smaller tumor xenografts as experiments 
were bound to terminate at EDD14 to prevent variability that might 
arise due to infiltration of immune cells and ethical concerns. 
Since only tumor cells are implanted onto CAM, it appears that 
U87 cells recruit chick endothelial, fibroblasts and secrete ECM 
to form solid xenograft. ECs can be observed as profuse blood 
vessels in the histological sections photographed at 100 and 400 
magnification (× 10 and × 40 objective) (Fig. 6A).
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6.5. Protocol for CAM angiogenesis and NP characterization

6.5.1. Chick embryo culture
Pathogen-free fertilized white Leghorn (Gallus gallus) eggs were 

procured from Venky’s (India) Limited, Haryana Division, India. 
Eggs were wiped with alcohol 70%, numbered, weighed, and placed 
inside a humidified chamber (REMI CHM-10 PLUS) in a horizontal 
position for incubation at 37°C ± 1 and 80% ± 10 relative humidity. 
The eggs were rotated after every 3-4 h during the daytime to pre-
vent the vitelline membrane from sticking on to the eggshell until 
the preparation of the culture for experimental manipulation. This 
study was approved by the Institutional Animal Ethics Committee 
(IAEC approval; ID DU/KR/IAEC/2017/06).

Windowing method (in ovo): Briefly, on EDD3, HH (Hamburger and 
Hamilton) stage 20, a hole was made on the narrower end side of 

Fig. 6. Images of CAM U87 xenografts and distribution of IONPs within the tumor. (A) (a-l) CAM U87 xenografts 6 days (EDD9-EDD15) post inoculation. 
(a-c) In situ images of chick CAM implanted with different U87 cell densities and control with only the media; (d-f) corresponding excised explants of a-c 
vertically imaged under Radical Stereo Zoom Microscope fitted with a camera; (g-i) histological sections (H&E staining) of corresponding explants of d-f 
vertically imaged with the help of Nikon Eclipse Ts2R microscope; (j,k) higher magnifications. (l) Qualitative image analysis of histology indicates numerous 
small blood vessels and capillaries along with tumor cells. The compactness of the solid tumor indicates that apart from tumor and endothelial cells, other 
supporting cells were also recruited within the U87 xenograft. Circles represent the site of transplants/explants; blue circles represent GS minus tumor cells; 
yellow circles represent U87 xenografts. The black arrow indicates vascular structure (n=3). The blood vessels were counted under brightfield imaging at 
a 200 magnification (x20 objective) in 3 fields with high blood vessel density. The data is represented as mean ± standard deviation. For comparison of 
means, a two-tailed unpaired t-test was performed. ***p<0.001 indicates statistically significant differences. (B) (a,b) Transmission electron microscopy 
images of IONPs. (c,d) Images captured at low magnification to observe overall accumulation and 100× insets demonstrate intracellular localization of 
IONPs. Images show accumulation of bare IONPs <50 nm and 50-100 nm injected systemically on EDD14. Six hours post-injection of IONPs into CAM 
blood vessels, xenografts were excised and processed for paraffin embedding and histology. Prussian blue pigments on the 5 µm sections qualitatively 
indicate that <50 nm particles efficiently accumulate within the xenograft. The image was taken with Nikon Eclipse E200 upright brightfield microscope. 
Abbreviations: CAM, chorioallantoic membrane, EDD, embryonic development day; GS, gelatin sponge; IONPS, iron oxide nanoparticles.

6.4. Distribution of NPs in CAM U87 xenograft growth
As proof of concept, accumulation of IONPs of <50 nm and 

50-100 nm sizes were determined post systemic injections in de-
veloping xenograft. Histological examination confirms that these 
particles were observed to be localized intracellularly as well as 
extracellularly within cells of xenograft (Fig. 6B). Intravenously 
administered NPs seems to remain in circulation and accumulate 
within tumor xenograft overtime. Here, variable size IONPs were 
used to investigate the impact of size on its ability to distribute within 
tumor tissue. Qualitatively, results indicate passive accumulation of 
<50 nm particles to be higher in comparison to 100 nm particles. 
Additional work will be performed with surface coated IONP and 
observe its accumulation within tumor tissue. Reproducibility, 
ease of manipulation, budget and quality data obtained through 
experimentation will certainly make this model an alternative to 
performing nano-characterization experiments.

			 
BA
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the egg and 4 ml of albumin was removed to prevent developing 
CAM from sticking onto eggshell. On EDD4 (HH stage 24), 1.5 × 1.5 
cm to ~3 x 2.5 cm window (determined on the need of the experi-
ment) was created for easy access or visualization of developing 
embryos. The window is then sealed with a sterile breathable 
parafilm strip and replaced inside the Humidity chamber.

					   
Shell-less culture (ex ovo) technique: For the boat and hammock 
method, eggs were opened on the EDD4 (HH stage 24) and con-
tents transferred in the polystyrene square weigh dish/boat (3.5 L 
x 3.5 W x 1 Depth, in inches; Cole-Parmer Instrument Co.) or ham-
mock, made with the help of normal food cling wrap supported 
by plastic juice cup. The plastic cup was filled with sterile water 
to stabilize the assemblage. The polystyrene boat culture dishes 
were sealed with parafilm and the cling-wrap hammocks covered 
with the plastic juice cup caps and placed in trays kept inside the 
humidity chamber. Growth of embryos was monitored from time 
to time for its health.

					   
6.5.2. Chick CAM angiogenesis assay

On EDD9 (HH stage 34), GS of approximately 6.6 mm x 6.6 
mm x 3.5 mm (L x B x thickness), pre-soaked overnight in test 
compounds (60 µl) were implanted onto the CAM. On EDD11, im-
ages were taken of the chick CAM and the vascularization network 
analyzed with ImageJ for the quantitative determination of the 
anti-angiogenic effect of the test compounds through the number 
of nodes, meshes and total length formed.

				  
6.5.3. GBM-xenograft growth on CAM

25 µl of cell suspension with a cell density of about 750,000 to 
1.5 x 106 U87(MG) cells were loaded onto GS (L x B, 4 mm x 4 mm; 
thickness, 2 mm) and placed on chick CAM of EDD9 (HH stage 
34). To maintain uniformity, sponges were placed in the area of 
minor vascular branches with the cell suspension side facing the 
CAM surface. The chick embryos with grafted U87 cells were then 
placed in the humidity chamber maintained at optimized conditions 
of 37°C ± 1 and 80% ± 10 humidity. On EDD14, the tumor xenografts 
were excised with the help of dissecting scissors and forceps. 
Measurements were taken with a caliper for volume calculation. 
Volumes were calculated using the equation: volume (mm3) = (W2 
× L)/2, where, L = major anteroposterior diameter, W = diameter 
from left to right (Tomayko and Reynolds, 1989).

				  
6.5.4. Analysis of tumor-induced CAM angiogenesis

For this study, U87 xenografts were fixed overnight in 10% 
formalin and processed for hematoxylin and eosin (H&E) staining 
following the standard protocol. The xenografts were dehydrated 
and cleared by passing through a series of graded alcohols in the 
order: 10 > 70 > 80 > 90 > 100% > acetone > xylene 2× each for 20 
minutes. This was followed by tissue embedding which involved 
placing of the specimen in wax-filled molds 2× maintained at 70°C 
for 20 minutes. The specimen block was then allowed to solidify 
on a cool surface and when set, the mold was removed. The block 
containing the specimen was trimmed and sections of 4 µm were 
cut with steel blades. Sections are then floated out on the surface 
of warm water (50°C) in a tissue floatation bath to flatten them 
and picked onto microscope slides. After thorough drying, the 
tissue slides were process for staining. Staining involved the fol-
lowing steps in the indicated order: warming of slide at 70°C for 5 

minutes > clearing of wax from tissue sections with xylene 2× for 
3-5 minutes each > acetone 2× for 2-3 minutes each > thorough 
washing in running tap water for 5 minutes > staining the slide with 
Harris hematoxylin nuclear stain for 1 minute > one dip in 1% acid 
alcohol > rinsing in running tap water > staining with an aqueous 
or alcoholic solution of eosin for 30 seconds > passing of the slide 
through several changes of alcohol to remove all traces of water 
> rinsed in several baths of xylene > application of a thin layer of 
polystyrene mountant (DPX-Dibutylphthalate Polystyrene Xylene) 
> glass coverslip covering. The prepared stained tissue sections 
were then evaluated for blood vessels. 

				  
6.5.5. Injection of nanoparticles

Chick CAM of EDD14 bearing tumor xenograft were intrave-
nously injected with about 50 µl of IONPs dissolved in 1×PBS 
(0.61 mg/ml) with the help of an Insulin syringe (Dispo Van U-40 
Insulin Syringe). 5-6 h post-inoculation, the tumor xenografts were 
excised and tissue sections of Prussian blue (PB) pigments by 
iron-Prussian blue reaction were prepared for the determination 
of IONP distribution/localization. Briefly, following deparaffiniza-
tion and hydration of the tissue slide (passing through a series of 
alcohols in the order: 100 > 95 > 90 > 80 > 70 > distilled water for 
3-5 minutes in each), a mixture of 2% HCl and 2% ferrocyanide in 
equal parts were placed on the slide and kept at room temperature 
(RT) for 30 minutes. The slide was washed with distilled water and 
incubated with nuclear fast red for 5 minutes at RT. After which, the 
tissue slide was washed several times with tap water and distilled 
water. This was followed by dehydration with a series of alcohol in 
the following order: 70 > 80 > 90 > 95 > 100%. The slide was then 
mounted with DPX and covered with a coverslip.

				  
7. Advantages and limitations of CAM as a 3D model for 
tumor angiogenesis and nanotherapeutics evaluation

Compared to other methods, the CAM is an easy, swift, and 
inexpensive biomedical research model. The chick embryo can 
receive transplants from different tissues and animals without 
developing an immune reaction. Murphy transplanted different tis-
sues into adult and embryonic chickens to answer immunological 
questions for the first time. He then demonstrated that while rat 
tissues could not be sustained in adult chickens, they could grow 
on the CAM until day 18 of development (Murphy, 1914).

The chick CAM can successfully support tumor growth with the 
majority of retention of cancer cell characteristics, such as growth, 
invasion, angiogenesis, and remodeling of the microenvironment, 
due to an immature immune system. Additionally, the sequenc-
ing of the chicken genome showed a high degree of sequence 
similarity to humans. 

The biggest drawback of CAM assays is a non-specific inflam-
matory response, which might happen if experiments are run 
past the recommended 15-day incubation period. A non-specific 
inflammatory response is substantially less likely when the tissue 
is transplanted as soon as the CAM begins to grow and the host’s 
immune system is relatively young (Leene et al., 1973). The timing 
of the CAM angiogenic response is crucial because real neovascu-
larization is difficult to differentiate from an erroneously enhanced 
vascular density caused by rearranging existing arteries (Knighton 
et al., 1991). Another limitation of the CAM model is the limited time 
to perform the experiments (generally limited to a week). The short 
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time window hampers the detection of metastasis to secondary 
sites. In addition, the CAM is highly susceptible to environmental 
modifications, including variations in oxygen tension, osmolarity, 
pH, and the degree of keratinization (Auerbach et al., 1974). 

		
8. Ethical considerations

Considering the widespread concern over the extensive us-
age of murine models, the cost, the pain and the suffering they 
endure in the process, WMS Russell and RL Burch proposed in 
1959 the 3R strategy which stands for replacement of highly 
sensitive higher organisms with impervious forms, reduction of 
the number of organisms used to obtain the desired result, and 
refinement to reduce the inhumane practices endured by the 
animal model during experimentation (Tannenbaum and Bennett, 
2015). The proposal was to refine the welfare of research animal 
models or find an alternative model but at the same time without 
compromising on the quality of biomedical research findings.

The murine models posed a disadvantage when it comes to 
the 3R strategy proposed by Russell and Burch (1959) to lessen 
the sufferings on experimental animals. More concerning is the 
fact that most of the preclinical studies undertaken using murine 
models are expensive and time-consuming. This void could be 
easily bridged by using the CAM model, before moving on to 
murine models for further validation, thereby aiding in reducing 
the usage of murine models.

Unlike murine models, the usage of the CAM model in biomedi-
cal research is considered to be associated with lesser restric-
tions. In several places, the usage of CAM does not require any 
ethical clearance, while in others, a simple protocol approval by 
the concern committee or a definite review as that for vertebrate 
animal procedure dependent on the intended stage of the embryo 
for experimental use is required. According to the Office of Labo-
ratory Animal Welfare (OLAW), National Institute of Health (NIH), 
US, avian embryos are considered live vertebrate animal only on 
hatching, therefore, omitting the hassles of ethical approval prior 
to use of avian embryonic stages (Robl et al., 1991). OLAW is a 
division of the NIH which develops, implements and oversees the 
compliance on the Humane Care and Use of Laboratory Animals 
(Policy) with that of the Public Health Service (PHS) Policy. On 
account of the general agreement in the scientific community 
on the probable development of sufficient perception by chick 
embryos past two thirds of their incubation/developmental period 
(day ≤14 in the case of avians with a total incubation period of 
21 days), it is highly recommended that research institutions or 
their parent bodies have a set rule of policies and procedures 
or an Institutional Animal Care and Use Committee (IACUC) to 
address the care or euthanasia of animals, including avian em-
bryos. At Brown University, one of the oldest institutes of higher 
education in the United States, the IACUC guideline undermines 
the need for IACUC review for studies involving avian embryos 
of day ≤18 (Brown University, 2019). In Boston University, in ac-
cordance to the Office of Research, usage of embryos before 
day 16 of incubation does not require prior approval from IA-
CUC, however, it is recommended of the principal investigator 
to submit a letter to the IACUC stating briefly the experimental 
procedure using the embryonated eggs (Boston University, 2023). 
University of Illinois Urbana-Champaign IACUC follows a similar 
policy as that of Boston University on the use of avian embryo, 

i.e., presentation of complete experimental procedure to IACUC 
(Illinois Urbana-Champaign, 2023). The directive 2010/63/EU of 
the European Parliament and the council of 22 September 2010 
on the protection of animals used for scientific purposes em-
phasizes on a similar principle that non-mammalian embryonic 
forms before the first two thirds of their developmental stage 
could be employed without any restrictions, i.e., chick embryos 
of day ≤14 (European Parlament & Union, 2010). In India until 
June 2023 no approval was required for use of avian embryos for 
experimental purpose, however, beginning 5th June 2023, based 
on the Committee for the Purpose of Control And Supervision 
of Experiments on Animals (CCSEA) notification, a protocolar 
approval is required from institutional animal ethics committee 
(IAEC) (CCSEA, 2023). In view of the above information, studies 
using chick embryo across the globe are govern by similar IACUC 
or animal protection for scientific purpose policies.

		
9. Conclusion

The literature strongly suggests the use of chick CAM as one 
of the advantageous pre-clinical alternative to the animal-based 
murine model. However, on a different note, it is clear that a single 
in vivo model is insufficient to fully understand the process of 
angiogenesis. Thus, having data from CAM in addition to emerg-
ing and conventional model (murine, rabbit, zebrafish, aortic ring, 
choroid, and 2D) will provide a strong rationale and support for 
taking the lead molecules/nanoformulation to next level validation 
in higher animal. Efforts should be made to popularize simple 
economical systems and accelerate drug discovery research as 
well as simultaneously reduce the number of higher animals used 
in cancer and angiogenesis research.
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