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ABSTRACT	 Stem cell technologies have opened up new avenues in the study of human biology and 
disease. In particular, the advent of human embryonic stem cells followed by reprograming technolo-
gies for generation of induced pluripotent stem cells have instigated studies into modeling human brain 
development and disease by providing a means to simulate a human tissue otherwise wholly or largely 
inaccessible to researchers. Brain development is a complex process achieved in a remarkably controlled 
spatial and temporal manner through coordinated cellular and molecular events. In vitro models aim to 
mimic these processes and recapitulate brain organogenesis. Initially, two‐dimensional neural cultures 
presented an innovative landmark for investigating human neuronal and, more recently, glial biology, 
as well as for modeling brain neurodevelopmental and neurodegenerative diseases. The establishment 
of three‐dimensional cultures in the form of brain organoids was an equally important milestone in 
the field. Brain organoids mimic more closely the in vivo tissue composition and architecture and are 
more physiologically relevant than monolayer cultures. They therefore represent a more realistic cel-
lular environment for modeling the cell biology and pathology of the nervous system. Here we highlight 
the journey towards recapitulating human brain development and disease in a dish, progressing from 
two‐dimensional in vitro systems to the third dimension provided by brain organoids. We discuss the 
potential of these approaches for modeling human brain development and evolution, and their promising 
contribution towards understanding and treating brain disease.
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Introduction 

Since their discovery, stem cells have ushered in a new era in 
regenerative medicine. In particular, due to the limited regenerative 
capacity of the adult nervous system, the therapeutic potential of 
stem cells has opened up new perspectives for development of treat-
ment strategies for brain repair after injury or disease. Therefore, 
the therapeutic use of appropriate populations derived from stem 
and progenitor cells has been considered for cell–based therapies 
for neurodegenerative diseases, primarily Parkinson’s disease, and 
brain injuries. Some of these efforts have reached the level of clinical 
trials. Such studies were originally inspired by the discovery that 
tissue‐specific neural stem cells able to self‐renew and differentiate 
are naturally present in the adult brain throughout life (Doetsch et 
al. 1999; Kempermann et al. 2004; Kriegstein and Alvarez‐Buylla 

2009). In rodents, the process of adult neurogenesis, which is 
the production of new functional neurons that are integrated into 
established neuronal circuits, mainly occurs in two brain regions: 
the subventricular zone of the lateral wall in the lateral ventricle, 
and the subgranular zone of the dentate gyrus in the hippocampus. 
Extensive investigations suggest that adult neurogenesis in these 
two brain regions is functionally associated with, and respectively 
contributes to, the processes of olfaction or learning and memory 
(Zhao et al. 2008). The search for an equivalent to adult mouse 
neurogenesis in humans has been a more challenging and contro-
versial issue (Paredes et al. 2018). Nevertheless, several studies 
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support that adult neurogenesis also occurs in the human brain, 
in the hippocampal area, but this process declines fast with age 
(Kempermann et al. 2018). Interestingly, neural stem cells both 
in rodents and in humans can respond to injury or disease by 
attempting to repair and regenerate the damaged tissue. During 
this process, which is however not very efficient, neural stem and 
progenitor cells can differentiate not only into neurons but also into 
glial cells, depending on the type of injury (Nait‐Oumesmar et al. 
2007; Benner et al. 2013). For example, in cases in which myelin is 
destroyed and oligodendrocytes die, as in multiple sclerosis, neural 
stem cells give rise to new oligodendrocytes to replace those that 
are lost. These observations have indicated that the adult brain is a 
far more plastic tissue than originally thought, and have instigated 
research into enhancing brain regeneration and repair. Two main 
restorative approaches have been pursued: aiming to increase the 
beneficial response of endogenous neural stem and progenitor 
cells, or to replace lost cells by grafting exogenous neural stem 
cell populations (Björklund and Lindvall 2000; Ottoboni et al. 2020). 
Cell transplants proved to make a somewhat limited contribution 
in cell replacement per se, but could significantly enhance the 
endogenous reparative potential of the damaged brain by secret-
ing growth factors and other regeneration-promoting molecules.

The proliferation versus differentiation potential of neural 
stem and progenitor cells is of paramount importance for brain 
homeostasis, but also in a context of injury or disease. We and 
others have been studying the biology of neural stem cells, and 
have identified key molecular mechanisms coordinating cell cycle 
exit and differentiation (Politis et al. 2007; Katsimpardi et al. 2008; 
Kaltezioti et al. 2010; Prodromidou et al. 2014) aiming at translational 
approaches for treatment of CNS pathology. We have thus devel-
oped therapeutic cell transplantation in pre‐clinical mouse models 
of brain and spinal cord injury, resulting in important anatomical 
and functional recovery (Papastefanaki et al. 2007; Miltiadous et 
al. 2013; Papastefanaki et al. 2015; Koutsoudaki et al. 2016). The 
knowledge garnered from these studies laid the groundwork for 
transition from mouse models to a human setting, to address spe-
cific biological questions that are clinically relevant (Kouroupi et al. 
2017; Taoufik et al. 2018; Prodromidou and Matsas 2019; Zygogianni 
et al. 2019; Prodromidou et al. 2020). Indeed, the advent of human 
embryonic stem cells followed by reprograming technologies for 
generation of induced pluripotent stem cells (collectively referred 
here as pluripotent stem cells; PSCs) has prompted studies into 
modeling human brain development and disease by providing a 
means to simulate a human tissue otherwise completely or largely 
inaccessible to researchers . 

    
Why human models?

The human brain is a most complex organ, responsible for 
high‐order cognitive functions and social behavior as well as sen-
sory, motor and emotional control, whilst its impairment results 
in neurodevelopmental, neuropsychiatric and neurodegenerative 
disorders. It encompasses an unparalleled diversity of neuronal 
types and subtypes, which arise during development through a 
series of evolutionary conserved processes, such as progenitor cell 
proliferation, migration and differentiation, incorporating human‐
specific adaptations, including a protracted period of embryonic 
neurogenesis and the emergence of novel highly heterogeneous 
progenitor cell populations (Li et al. 2020; Le Bail et al. 2021). Disen-

tangling the unique features of the human brain and its vulnerability 
to neurological disease involves elucidation of the intricate devel-
opmental cell transitions orchestrated by progressive molecular 
events that are tightly controlled in time and space. Rodents have 
long provided valid proxies for morphological neuroanatomical 
studies, behavioral paradigms and disease modeling. Neverthe-
less, a challenging goal of contemporary neuroscience concerns 
reconstruction of the unique elements that constitute the human 
brain (Lui et al. 2011). Efforts are directed towards elucidation 
of species‐specific cellular, molecular and biochemical features 
that shape neuronal connectivity and dictate high‐order cognitive 
functions and social behavior. The basic principles of neurogenesis 
are conserved across species and include proliferation and diver-
sification of neural progenitor cells that give rise to an extensive 
array of distinct neuronal and glial phenotypes (Lodato and Arlotta 
2015). However, the mouse brain is much smaller, with just 14 
million cortical neurons compared with 12 billion in humans, and 
is lissencephalic (i.e. has a smooth cortical surface), while that 
of humans is gyrencephalic (i.e. comprises a cortex with multiple 
convolutions or gyri) (Herculano‐Houzel et al. 2006; Herculano‐Hou-
zel et al. 2007). Thus, brain evolution has favored expansion of the 
cortical surface area, along with increase in the radial thickness 
of the cerebral cortex. This structural innovation is instructive for 
brain enlargement and involves an expanded primate germinal zone 
during embryonic development, a region where progenitors reside 
and proliferate. Consequent evolutionary adaptations incorporate 
a protracted period of human neurogenesis, and accompanying 
changes in the morphology and abundance of both excitatory and 
inhibitory neurons, as well as glial cells, resulting in more complex 
patterns of synaptogenesis and neuronal connectivity. 

Human in vitro models derived from PSCs have progressed 
significantly in recent years. The derivation of the first human 
embryonic stem cell lines in 1998 provided a starting point to 
recapitulate embryonic development and derive a variety of tissue 
cell types (Thomson et al. 1998). Another breakthrough was the 
discovery of reprogramming factors to produce induced pluripotent 
stem cells, which could be generated from a variety of adult so-
matic cells (Takahashi and Yamanaka 2006). This game‐changing 
technology assuaged ethical concerns associated with the use of 
human embryonic stem cells and opened the door to pluripotent 
stem cells from patients, particularly those with genetic disorders, 
allowing the in vitro study of disease pathogenesis. Finally, the 
generation of organoids mimicking more closely tissue complexity 
and spatial organization was a major milestone, allowing to simu-
late human brain development and disease in three dimensions 
(Lancaster et al. 2013). 

    
The potential of two‐dimensional cultures: lessons learned 
from Developmental Biology

The knowledge gained from years of intensive research into 
the development of various organisms, ranging from Xenopus to 
mice, was adapted to guide the generation of protocols for 2D 
cellular systems. A major breakthrough was the establishment 
of appropriate conditions for PSC culture in an undifferentiated 
pluripotent state, and the progress made in devising methods 
for their directed differentiation to neuronal cells based on basic 
principles of developmental biology. Floating cellular aggregates 
forming embryoid bodies were induced towards a neural fate, using 
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a cocktail of inhibitors suppressing endodermal and mesodermal 
differentiation, such as dual inhibition of SMAD signaling (Cham-
bers et al. 2009). Embryoid bodies were then seeded as adherent 
cultures and differentiated into neural precursors, first, and then 
into neurons, using a mixture of growth factors, including sonic 
hedgehog (SHH) and fibroblast growth factor 8b, followed by neu-
ronal maturation factors such as brain‐derived neurotrophic factor 
(BDNF), glial cell‐derived neurotrophic factor (GDNF), ascorbic acid 
(AA) and cyclic AMP (cAMP) (Soldner et al. 2009). The sequence of 
events taking place in vitro in these cultures recapitulates to a large 
extent the processes occurring during neurogenesis in vivo and 
follows the cell‐intrinsic transcriptional timing characterizing the 
various stages of neuronal birth and differentiation. Such cultures 
are usually composed of a mixture of GABAergic, glutamatergic 
and to a lesser extent dopaminergic neurons (Kouroupi et al. 2017), 
but more refined protocols yielding cultures enriched in specific 
neuronal types, e.g. midbrain dopamine neurons, have also been 
developed (Kriks et al. 2011). 

The cerebral cortex is a laminated structure organized into six 
layers comprising a large number of neurons that are classically 
divided into two major types: excitatory glutamatergic pyramidal 
projection neurons, and inhibitory GABAergic interneurons. Pyra-
midal neurons comprise the overwhelming majority, amounting 
to almost 80% of cortical neurons, and comprise the only output 
system and the largest input system, conveying information from 
and to the cerebral cortex. Cortical neurons are further character-
ized by different molecular and electrophysiological properties, as 
well as by distinct patterns of synaptic connections. Understand-
ing how this remarkable neuronal diversity is generated and how 
neural circuits are formed during cortical development remains 
a challenge, particularly in humans. Interestingly, PSCs have a 
tendency to differentiate into neural cells in a chemically‐defined 
medium, even in the absence of morphogens, acquiring a dorsal 
forebrain identity (Gaspard et al. 2008). Thus, it has been pos-
sible to simulate cortical development in PSC‐derived cultures in 
a time‐dependent fashion, similar to the in vivo situation whereby 
functional pyramidal neurons are generated sequentially, with 
deep‐layer neurons appearing first, followed by upper‐layer neu-
rons, and acquiring molecular identities of all six cortical layers 
(Gaspard et al. 2008; Espuny‐Camacho et al. 2013). After trans-
plantation, such PSC-derived cortical neurons could integrate into 
the newborn mouse brain and establish specific axonal projections 
and dendritic patterns corresponding to native cortical neurons 
(Espuny‐Camacho et al. 2013). Moving one step further, the same 

group showed that PSC‐derived neurons with visual cortex identity 
could integrate successfully into the lesioned mouse visual cortex 
after transplantation, whilst transplant maturation was far less ef-
ficient into the lesioned motor cortex, indicating that restoration 
of cortical pathways requires a donor and recipient area‐identity 
match (Espuny-Camacho et al. 2018). These data offer valuable 
prospects for modeling and treating human diseases associated 
with cortical dysfunction. 

Over the last decade, important efforts have also been made 
to produce cultures highly enriched in ventral midbrain dopamine 
neurons, the type of cells that degenerate in Parkinson’s disease. 
Since grafts of human fetal mesencephalic tissue, rich in dopami-
nergic neurons, in some cases showed had beneficial effects upon 
patients (Lindvall et al. 1994; Li et al. 2016), cell transplantation 
has long been considered a promising therapy for Parkinson’s 
disease. Therefore, considerable progress has been made in 
producing standardized preparations of PSC‐derived cells with 
appropriate midbrain identity in sufficiently large quantities and, 
importantly, at clinical grade to envisage their transplantation in 
patients (Barker et al. 2017; Nolbrant et al. 2017). In preparing for 
human application, several groups have demonstrated that in vitro-
derived human dopamine neurons are integrated into rodent and 
primate models of Parkinson’s disease and are capable of reversing 
disease symptoms (Kikuchi et al. 2017; Adler et al. 2019). These 
studies formed the foundations for the first clinical trials in humans 
(Schweitzer et al. 2020; Takahashi 2020). In a recent pioneering 
study, a patient with idiopathic Parkinson’s disease received for 
the first time a transplant of dopamine neurons obtained from 
in vitro differentiated PSCs, derived from the patient’s own skin 
fibroblasts, without the need for immunosuppression, demonstrat-
ing the feasibility of autologous transplantation for dopamine cell 
replacement (Schweitzer et al. 2020). 

The generation and optimization of two‐dimensional neuronal 
cultures has been instrumental in understanding human neuronal 
development and maturation, but also in modeling and investigat-
ing developmental neuropsychiatric brain diseases [for review see 
(Wang et al. 2020)]. Interestingly, despite the initial concerns over 
the use of human PSC‐based models from patient somatic cells to 
model age‐related neurodegenerative pathologies, such systems 
were developed for a number of age-related neurodegenerative 
diseases, including Parkinson’s, Alzheimer’s and Huntington’s 
diseases or amyotrophic lateral sclerosis, showing multiple phe-
notypes with considerable relevance for disease pathogenesis and 
progression. These systems can be of great value in uncovering 

Fig. 1. PSC‐derived astrocytes 
from patients with familial Parkin-
son’s Disease harboring the p.A53T 
alpha‐synuclein mutation. Cultures 
were immunostained for the charac-
teristic astrocytic markers glial fibril-
lary acidic protein (GFAP), aldehyde 
dehydrogenase 1 family member 
L1 (ALDH1L1) and the surface 
marker CD49f. Human PSC‐derived 
astrocytes display various levels of 
morphological complexity, reflect-
ing astrocyte heterogeneity in vivo. 
Scale bar, 40 μm.
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early, potentially triggering, disease mechanisms and assisting 
in drug discovery [reviewed in (Kouroupi et al. 2020; Trudler et al. 
2021)] (Nguyen et al. 2011; Consortium 2012; Chung et al. 2013; 
Mertens et al. 2013; Ryan et al. 2013; Duan et al. 2014; Balez et al. 
2016; Kondo et al. 2017; Kouroupi et al. 2017; Yang et al. 2017; Lin 
et al. 2018; Antoniou et al. 2022). 

Although neuronal cultures derived from PSCs have provided 
valuable tools for simulating brain development and disease, the 
contribution of glial cells in these processes is still under study. 
Recently, the formulation of protocols for producing PSC‐derived 
cultures enriched in astrocytes (Serio et al. 2013; Jones et al. 2017; 
Tcw et al. 2017; di Domenico et al. 2019; Barbar et al. 2020), oli-
godendrocytes (Wang et al. 2013; Ehrlich et al. 2017) or microglia 
(Svoboda et al. 2019; Hasselmann and Blurton‐Jones 2020) has 
emerged, based on developmental principles governing cell fate 
determination. Yet, there is a clear need for further refinement and 
optimization in these methods. As glial cells are generated in vivo 
at a later stage than neurons, one shortcoming is the extensive 
length of time required for the appearance and maturation of 
human glial cells in culture. Nevertheless, the first culture and co-
culture experiments with neurons have seen the light, paving the 
way for investigation of the critical neuron‐glial interactions during 
development, such as synaptogenesis, neuronal connectivity and 
myelination, as well as the role of glial cells in brain pathology 
(Jones et al. 2017; Oksanen et al. 2017; Zhao et al. 2017; Keskin 
et al. 2019; Narayan et al. 2020; Ponroy Bally et al. 2020).

      
The third dimension: generation of brain organoids

While two‐dimensional human PSC cultures have provided 
insights into cell intrinsic phenotypes, particularly in neurons, 
growing evidence suggested that 3D cellular aggregate cultures 
could lead to the generation of more complex tissue structures 
known as organoids. These could mimic more closely the in vivo 
tissue composition and architecture, and would therefore be 
more physiologically relevant than monolayer cultures. Indeed, 
the self‐organizing ability of PSCs in 3D structures has allowed in 
vitro recapitulation of organogenic processes. Due to the greater 
diversity of cell composition, the lack of cellular interactions with 
artificial plastic substrates, and the spontaneous formation of 
complex 3D structures comparable to those seen in the developing 
brain, organoids have the potential to create more realistic cellular 
environments for modeling the cell biology and pathology of the 
nervous system. 

      
Non‐guided and guided methods for organoid generation

The human brain is a highly complex tissue that can be broadly 
divided into three regions: the forebrain, midbrain, and hindbrain. 
In principle, to generate organoids from PSCs, the entire process 
of brain development should be mimicked as closely as possible. 
However, this is not possible, as all the cellular and molecular com-
ponents participating in embryonic brain development cannot be 
fully substituted. Fortunately, cells in vitro have an inherent potential 
to differentiate almost spontaneously, as they do in vivo, and with 
some guidance drawn from basic principles of developmental 
biology, can attain the desired phenotypes. Since our knowledge 
of human brain development is limited, the production of human 
organoids was based on equivalents drawn from mouse develop-
ment (Kim et al. 2020). The vertebrate central nervous system 

(CNS) is derived from the ectoderm, the outermost germ layer of 
the embryo. During early embryonic development, a part of the 
dorsal ectoderm becomes specified to neural ectoderm that forms 
the neural plate, from which the majority of neurons and glial cells 
originate. Neural stem and progenitor cells can be isolated from 
the embryonic or adult mouse brain and have the ability to form 
cellular aggregates in suspension, called neurospheres, which 
give rise to neuronal and glial progeny (Reynolds and Weiss 1992). 
Neural aggregates can also be obtained from human PSC‐derived 
free-floating embryoid bodies that are guided to a neuroectodermal 
lineage (Zhang et al. 2001). Once the cell aggregates acquire the 
fate of neural progenitors, the remaining developmental steps can 
occur spontaneously. The realization that human neuroepithelial 
cells can self‐organize to form expandable neural rosettes from 
PSCs, which contain neural stem and precursor cells surrounding 
a central lumen resembling the neural tube, was a milestone in the 
development of three‐dimensional organoids (Eiraku et al. 2008; 
Elkabetz et al. 2008). 

The generation of self‐organizing optic cups from mouse PSCs 
was the first entirely 3D neural culture displaying intact tissue 
architecture (Eiraku et al. 2011). This accomplishment provided 
the first indication that a free‐floating 3D neural culture could 
self‐organize and form histologically accurate tissue architecture. 
In an unrelated study performed at the same time, the research 
group led by Hans Clevers reported that adult intestinal stem cells 
grown in Matrigel, a supportive extracellular matrix gel, could gen-
erate remarkably organized 3D tissues in vitro that resembled the 
intestinal crypt and epithelium (Sato et al. 2009). A key finding in 
this study was that embedding epithelial cells in Matrigel provided 
a suitable environment for self-organization into a 3D structure. 
Reasoning that the brain also develops as an epithelium and that 
Matrigel could provide a supportive matrix for epithelia, Lancaster 
et al developed the first human PSC‐derived three‐dimensional 
organoid culture system (Lancaster et al. 2013). Because of lack 
of inductive signals in the culture medium, the organoids that were 
produced exhibited a variety of brain regional identities including 
discrete forebrain, midbrain and hindbrain areas, and even regions 
with retinal specification. 

Unguided brain organoids, produced by spontaneous morpho-
genesis due to the intrinsic signaling potential of human PSC ag-
gregates, comprise various kinds of neural cell lineages, including 
neural progenitors, excitatory and inhibitory neurons, astrocytes 
and oligodendrocyte precursors, providing the opportunity to 
investigate interactions between different cell types and brain 
regions (Quadrato et al. 2017; Kanton et al. 2019). However, such 
spontaneously derived organoids present high intra‐ and inter‐batch 
variability, making systematic studies very challenging. Variable 
results are also obtained when different PSC lines are used. These 
difficulties prompted the guided generation of region‐specific 
organoids, using small molecules and growth factors to promote 
a certain cell lineage representative of a specific brain region. 
Thus, organoids with region‐specific identities have been pro-
duced, such as the forebrain (Mariani et al. 2015), cerebral cortex 
(Velasco et al. 2019), various telencephalic regions (Kadoshima et 
al. 2017), hippocampus (Sakaguchi et al. 2015), medial ganglionic 
eminence (Xiang et al. 2017), midbrain (Jo et al. 2016; Qian et al. 
2018; Smits et al. 2019), cerebellum (Muguruma et al. 2015), and 
choroid plexus-cerebrospinal fluid organoids (Pellegrini et al. 2020). 
Single cell profiling for transcriptomic and epigenomic analyses 
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has been instrumental in identification of the cell types present 
in such in vitro 3D cultures and their comparison with the in vivo 
human brain tissue. Moreover, pseudotemporal cell trajectories 
have been created to reconstruct hierarchical gene expression 
patterns and cellular specification during human brain develop-
ment. Camp et al. pioneered the use of scRNA‐seq technology 
to characterize brain organoids (Camp et al. 2015). Although in 
this study only 333 cells were captured, the authors were able to 
provide the first evidence that brain organoids recapitulate gene 
expression programs seen in human fetal cortex development. 
Subsequently, in a high throughput study, Quadrato et al. analyzed 
more than 80,000 cells from 31 individual organoids, providing 
evidence that organoids can generate a broad diversity of cells, 
related to endogenous types, including cells from the cerebral 
cortex and the retina (Quadrato et al. 2017). Organoids could be 
maintained over extended periods, reaching maturation levels not 
previously attainable, including the formation of dendritic spines 
in neurons and the generation of spontaneously‐active neuronal 
networks. Notably, neuronal activity could be controlled using light 
stimulation of photoreceptor‐like cells (Quadrato et al., 2017). Re-
markably, single cell profiling of human, chimpanzee and macaque 
organoids illuminated dynamic gene‐regulatory features that are 
unique to humans, most strikingly a slower pace of human neuronal 
development relative to the other two primates, and divergence in 
chromatin accessibility that correlated with human-specific gene 
expression and genetic change (Kanton et al. 2019). 

Glial cells are gaining increasing attention because of the 
important roles they play in neuronal development and disease. 
In fact, it has been proposed that not only are the properties of 
neurons unique to the human brain, but also that differences in 
the number and properties of glial cells account for unique human 
brain characteristics and cognition. Astrocytes interact extensively 
with neurons to influence their development and maturation, as 
well as synapse formation and maintenance. Because they are 
generated later than neurons and take long to mature, it has been 
difficult to study human astrocytes in a native environment. By 
allowing human cerebral cortical spheroids derived from PSCs 
to develop and mature in vitro for months to years, Sloan and col-
leagues were able to monitor the development of astrocytes and 
characterize their functional properties. It was thus shown that 
human organoid‐derived astrocytes were able to induce synapse 
formation, take up glutamate and synaptosomes, and increase 
the amplitude of calcium dynamics in human neurons (Sloan et 
al. 2017). Three‐dimensional human brain organoids containing 
oligodendrocytes as well as neurons and astrocytes have also been 
developed to assist in investigating human oligodendrogenesis and 
understanding the mechanisms underlying white matter disorders 
(Marton et al. 2019). 

Guiding organoids towards the neuroectodermal lineage 
excludes generation of non-ectodermal cell types, such as meso-
dermal‐derived microglia, the resident immune cells of the brain 
that play an important role in brain development, function and 
pathology. One approach to incorporate microglia in organoids 
and study their interaction with neural cells has been to generate 
human PSC‐derived microglia separately and let them infiltrate 
and integrate into brain organoids. This method permitted the 
study of microglial morphology, migration, and response to injury 
in a complex, human 3D cellular environment (Abud et al. 2017). 
Interestingly, Ormel et al. showed that microglia can also develop 

innately within cerebral organoids generated without dual SMAD 
inhibition, and display their characteristic ramified morphology, 
molecular phenotype and function (Ormel et al. 2018) 

      
Brain assembloids

Organoid methodology has been evolving, to reflect the cellular 
complexity of the human brain. A relatively simple approach has 
been to mix different cell types before aggregates are formed, as in 
the case of cortical organoids with vasculature‐like structures that 
enhanced their survival and maturation (Cakir et al. 2019). How-
ever, such systems cannot achieve a defined spatial organization 
echoing the in vivo brain architecture. To study spatially organized 
processes during development, such as neuronal migration and 
connectivity, the so-called assembloids were devised via a fusion 
of brain organoids with different regional identity. In this regard, 
the Pasca lab has generated three‐dimensional spheroids from 
human PSCs that resemble either the dorsal or the ventral fore-
brain, respectively, containing cortical glutamatergic or GABAergic 
neuronal progenitors. When these region‐specific forebrain organ-
oids were assembled in vitro, they could recapitulate the migratory 
behavior of interneurons observed in the fetal forebrain (Birey et 
al. 2017; Xiang et al. 2017). Notably, after migration, GABAergic 
interneurons functionally integrated with glutamatergic neurons to 
form a microphysiological system. Single cell analyses revealed 
that assembloids obtained by fusing patterned dorsal and ventral 
forebrain organoids have proper transcriptional profiles correspond-
ing to those identified in the early developing dorsal and ventral 
forebrain (Birey et al. 2017; Xiang et al. 2017; Giandomenico et al. 
2019; Yoon et al. 2019).

To study the human cortico‐striatal circuitry that regulates moti-
vated behaviors, human PSCs were converted into region‐specific 
brain organoids that resembled the developing human striatum 
and contained electrically active medium spiny neurons. Striatal 
organoids were then fused with cerebral cortical organoids in 
three-dimensional cultures to form cortico‐striatal assembloids 
(Miura et al. 2020). Using viral tracing and functional assays, it was 
shown that cortical neurons sent axonal projections into striatal 
organoids and formed functional synaptic connections. Moreover, 
striatal medium spiny neurons matured electrophysiologically and 
displayed calcium activity after optogenetic stimulation of cortical 
neurons. Similarly, functional human cortico‐motor assembloids 
were generated by fusing cortical organoids to organoids resem-
bling the hindbrain/spinal cord that were further assembled with 
human skeletal muscle spheroids to yield 3D cortico‐motor assem-
bloids (Andersen et al. 2020). Using rabies virus synaptic tracing, 
calcium imaging, and patch‐clamp recordings, it was shown that 
corticofugal neurons project and connect with spinal spheroids, 
while spinal‐derived motor neurons connect with muscle. These 
systems highlight the remarkable self‐assembly potential of 3D 
cultures to form functional circuits that could help us understand 
human brain development and disease. 

      
Disease modeling with brain organoids

To date, a number of important studies have modeled neuro-
developmental disorders, including microcephaly (Lancaster et al. 
2013), lissencephaly (Bershteyn et al. 2017; Iefremova et al. 2017), 
autism spectrum disorders (Mariani et al. 2015), schizophrenia 
(Stachowiak et al. 2017) and zika virus infection (Cugola et al. 
2016; Qian et al. 2016) in human organoids. Relevant disease 
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phenotypes and, in some cases, associated disease mechanisms, 
have been uncovered. Using a forebrain assembloid system re-
sulting from fusion of spheroids with dorsal and ventral forebrain 
identities, Birey et al demonstrated that in Timothy syndrome, a 
neurodevelopmental disorder caused by mutations in the CaV1.2 
calcium channel, GABAergic interneurons display abnormal mi-
gratory behavior (Birey et al. 2017). Remarkably, identification 
and correction of mechanisms underlying a type of inherited 
blindness, in which photoreceptors are sensitive to an intronic 
mutation in the cilia‐related gene CEP290 that causes missplicing 
and premature termination, was achieved in human PSC‐derived 
optic cups. Treatment with an antisense morpholino effectively 
blocked aberrant splicing and restored expression of full‐length 
CEP290, restoring normal cilia‐based protein trafficking (Parfitt et 
al. 2016). Three‐dimensional organoid culture models also offer 
innovative possibilities for modelling human brain tumorigenesis. 
In this respect, Bian et al established a 3D in vitro model, termed 
neoplastic cerebral organoid, in which brain tumorigenesis was 
recapitulated by introducing oncogenic mutations into cerebral 
organoids via transposon‐ and CRISPR/Cas9‐mediated mutagen-
esis (Bian et al. 2018). Similarly, Ogawa et al developed a cancer 
model of gliomas in human cerebral organoids that allows direct 
observation of tumor initiation as well as continuous microscopic 
observations (Ogawa et al. 2018). These models should provide 
complementary means to existing basic and preclinical models 
for studying brain tumor biology. 

As with two‐dimensional cultures, the idea of using 3D brain or-
ganoids to study neurodegenerative diseases was initially met with 
skepticism. However, the few models that have been developed so 

far indicate that it is possible to recapitulate disease phenotypes, 
particularly for early onset but also for age‐related pathologies. 
Thus, a successful 3D model was developed for Alzheimer’s 
disease, the most common type of dementia, displaying disease 
hallmarks, such as deposition of extracellular amyloid‐β plaques 
and the formation of intracellular neurofibrillary tangles composed 
of aggregated hyperphosphorylated tau. This model was produced 
by overexpression of human beta‐amyloid precursor protein and 
presenilin 1 with FAD mutations in human neural stem cells (Choi et 
al. 2014). A more refined three‐dimensional human triculture model 
was developed for Alzheimer’s disease, incorporating neurons, 
astrocytes, and microglia in a 3D microfluidic platform (Park et al. 
2018). Apart from beta‐amyloid aggregation and phosphorylated 
tau accumulation, this model also presented neuroinflammation, 
an essential pathological manifestation in Alzheimer’s disease. In 
particular, the model mirrored microglial recruitment, neurotoxic 
activities such as axonal cleavage, and nitric oxide release damaging 
neurons and astrocytes. These observations were complemented 
by another study, demonstrating that APOE4 exacerbates synapse 
loss and neurodegeneration in PSC‐derived cerebral organoids 
derived from Alzheimer’s disease patients (Zhao et al. 2020). 
Transcriptomics profiling revealed that the cerebral organoids 
derived from these patients are associated with an enhancement 
of stress granules and disrupted RNA metabolism. 

Two recent studies highlighted the generation of midbrain organ-
oids in patients bearing the LRRK2 G2019S mutation associated 
with Parkinson’s disease. In both cases, the organoids could reca-
pitulate disease‐relevant phenotypes. In the first study, analysis of 
the protein‐protein interaction network in mutant organoids revealed 

Fig. 2. Forebrain and midbrain PSC‐derived organoids. (A) Immunocytochemical characterization of forebrain organoids at 30 days in vitro confirmed 
the existence of SOX2+ and PAX6+ neural progenitors, doublecortin (DCX)+ early neuroblasts, TUJ1+ neurons and TBR1+ and CTIP2+ deep‐layer early 
cortical neurons. Scale bar, 50 μm. (B) Midbrain organoids exhibited spatially organized groups of NESTIN+ neural progenitors, FOXA2+ midbrain floor 
plate progenitors and LMX1A+ early midbrain dopaminergic progenitors at 30 days in vitro; MAP2+ neurons and tyrosine hydroxylase (TH)+ dopaminergic 
neurons are evident at 60 days in vitro. Scale bar, 50 μm.
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that TXNIP, a thiol‐oxidoreductase, is functionally important in the 
development of LRRK2 pathology (Kim et al. 2019). In the second 
report, the floor plate marker FOXA2, required for dopaminergic 
neuron generation, was increased in patient organoids, surpris-
ingly suggesting a neurodevelopmental defect (Smits et al. 2019). 

Parkinson’s disease and related synucleinopathies are a group 
of neurodegenerative disorders strongly associated with alpha‐
synuclein pathology. The best‐characterized mutation is G209A 
in the alpha‐synuclein gene SNCA, resulting in the pathological 
p.A53T‐alpha‐synuclein protein. We have previously established 
a 2D PSC‐based model from patients bearing the p.A53T‐ alpha‐
synuclein mutation that simulates disease‐relevant phenotypes, 
including protein aggregates, compromised neuritic growth, 
axonal pathology and reduced synaptic connectivity (Kouroupi et 
al. 2017). To elucidate unexplored aspects of p.A53T pathology 
in an environment resembling more closely the in vivo situation, 
we recently generated forebrain and midbrain PSC-derived organ-
oids (Fig. 2). Forebrain organoids at 30 days in vitro consisted of 
radially aligned neural progenitor cells and early cortical neurons. 
In particular, immunocytochemical characterization confirmed 
the existence of PAX6+ and SOX2+ neural progenitors, HOPX+ 
outer radial glia, DCX+ early neuroblasts, and CTIP2+ deep layer 
early cortical neurons. On the other hand, midbrain organoids 
maintained for up to 60 days in vitro exhibited spatially organized 
groups of FOXA2+ midbrain floor plate progenitors, LMX1A+ early 
and NURR1+ late midbrain dopaminergic progenitors, as well as 
tyrosine hydroxylase (TH)+ dopamine neurons. Detailed charac-
terization for neuronal and astroglial differentiation in p.A53T 
organoids vis‐à‐vis isogenic gene-corrected or healthy controls 
is in progress, to explore alpha‐synuclein‐relevant pathology and 
assess therapeutic interventions.

        
Current limitations and future perspectives

The last decade has witnessed major progress in PSC technolo-
gies for modeling human organogenesis and disease. In particular, 
the appearance of three-dimensional systems of increasing com-
plexity, mimicking the brain microenvironment, represents a leap 
forward in terms of modeling neurological disease, as well as for 
developmental and evolutionary studies. Nevertheless, there are 
still limitations to overcome. An important drawback is the insuf-
ficient oxygen and nutrient diffusion within organoids that results 
in limited maturation and the formation of a necrotic core. Another 
serious shortcoming is the high degree of heterogeneity in efficiency 
of differentiation, morphology and size across different batches, 
which is higher when self‐patterned protocols are used. Inclusion 
of exogenous patterning factors and more controlled conditions 
should contribute towards the desired outcome. To overcome 
the lack of vasculature, brain organoids have been transplanted 
to rodent hosts to achieve vascularization in vivo (Mansour et al. 
2018). There have also been attempts to reproduce blood vessels 
in vitro, including co‐culture of endothelial and mesenchymal stem 
cells with PSC‐derived organoids. However, further optimization is 
necessary. The use of supporting matrices or microfluidic devices 
and other brain‐on‐chip technologies may be useful in this respect 
and open the way for more homogenous and reproducible cultures. 

In conclusion, stem cell technologies have contributed in an 
unprecedented fashion to the study of brain development and 
disease. Brain organoids, at the interphase between in vitro and in 

vivo, have opened up prospects for numerous human studies that 
would otherwise have been impossible. PSC‐derived human brain 
organoids display remarkably organized architecture that mim-
ics neurogenesis in a temporally and spatially regulated fashion, 
recapitulating embryonic brain development. Such systems have 
the potential to increase understanding of evolutionary aspects 
and uncover human‐specific traits. In combination with enabling 
technologies, such as genome‐editing, advanced imaging, auto-
mated drug screening and artificial intelligence approaches, brain 
organoids have great potential to yield novel biological insights 
into brain pathophysiology.
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