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ABSTRACT  This year marks the 40th anniversary of the discovery by Ed Lewis of the property of 
collinearity in the bithorax gene complex in Drosophila. This landmark work illustrated  the need to 
understand regulatory mechanisms  that coordinate expression of homeotic gene clusters. Through 
the efforts of many groups, investigation of the Hox gene family has generated many fundamental 
findings on the roles and regulation of this conserved gene family in development, disease and 
evolution. This has led to a number of important conceptual advances in gene regulation and evo-
lutionary biology. This article presents some of the history and advances made through studies on 
Hox gene clusters.  
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Perspective

The description of homeotic mutations by Bateson in 1894 has 
captivated biologists and embryologists for well over a century 
(Bateson, 1894, Lewis, 1994). How do alterations in these loci 
lead to the transformation of body parts and tissues? Pursuing 
an understanding of the molecular basis of these mutations held 
promise for developing mechanistic insights into the control of 
morphogenesis in evolution and development. Ninety years later, 
the convergence of emerging molecular biology techniques and 
genetics led to the exciting discovery of homeobox motifs in loci 
of the Drosophila Antennapedia (ANT-C) and bithorax (BX-C) 
homeotic complexes (McGinnis et al., 1984, Scott and Weiner, 
1984). The identification and characterization of the conserved 
Hox homeodomain transcription factor family stimulated a large 
number of new molecular studies of development in diverse ani-
mal systems. This provided new tools and approaches that paved 
the way for an explosion in our understanding of gene regulatory 
networks that govern animal development and establishment of 
the basic body plan. 

This year marks the 40th anniversary of the landmark study by 
Ed Lewis, which described the intriguing property of collinearity, 
associated with the roles of the bithorax gene complex in control-
ling segmentation in Drosophila (Lewis, 1978). Through elegant 
genetic analyses, this paper provided an impressive description 
and first glimpse into the components, rules and intricate cis and 
trans interactions that underlie the coordinate deployment of BX-C 
in patterning segment diversity. An interesting aspect of Lewis’s 
study is that very early on, before the genes themselves were 
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cloned, it focused attention on the critical importance of under-
standing gene regulatory mechanisms that control expression of 
the homeotic complex. In the decades since these initial discover-
ies of Hox genes, Hox complexes and collinearity it is remarkable 
that this gene family has not only yielded important insights on its 
roles in development, disease and evolution, but it has had a much 
broader impact and value in revealing and promoting a number of 
conceptual advances in variety of subject areas. 

The cloning of vertebrate Hox genes from humans, mice and 
amphibians revealed a surprising degree of conservation in 
genes, cluster organization and collinearity between vertebrate 
and invertebrate systems (Boncinelli et al., 1989, Boncinelli et al., 
1988, Dekker et al., 1992, DeRobertis et al., 1985, Duboule and 
Dollé, 1989, Gaunt et al., 1988, Graham et al., 1989, Regulski et 
al., 1987). This formed the basis for postulating that vertebrate and 
invertebrate Hox clusters arose by duplication and divergence from 
a common ancestor and they were associated with an ancient role 
coupled to axial patterning. However, in Drosophila, ANT-C and 
BX-C are separated from each other. Genetic analyses and clon-
ing of homeotic loci in the red flour beetle (tribolium) revealed a 
single HOM-C cluster (Stuart et al., 1991), as opposed to the split 
between ANT-C and BX-C in Drosophila. This suggested that a tight 
clustering of Hox genes may be more reflective of the ancestral 
state. The cloning of single Hox clusters, with many features shared 
by vertebrate clusters, in cephalochordates (amphioxus) (Garcia-
Fernandez and Holland, 1994) and hemichordates (Freeman et al., 
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2012) added further support for the concept of a common origin of 
Hox complexes during the evolution of chordates. 

In light of the ancient origin of Hox clusters, there has been an 
explosion of evolutionary studies into hypotheses regarding critical 
evolutionary events or pathways, such as the fin to limb transition 
or positioning the limb in vertebrates (Nakamura et al., 2016, 
Shubin et al., 2009)(Shubin et al., 1997). Furthermore, the number 
and organization of Hox clusters have been used as a basis for 
comparative evaluations of animal phylogeny and whole genome 
duplications. It is generally accepted that evidence from genome 
sequencing appears to support two rounds of whole genome du-
plication in evolution of vertebrates (2R) and in ray-finned fishes 
an additional fish-specific genome duplication event (3R) occurred 
(Meyer and Malaga-Trillo, 1999, Meyer and Van de Peer, 2005). 
This lead as many as eight copies of the ancestral deuterostome 
genome, creating a rich source of genes that could sub-divide 
functional roles or adopt new activities. However, there is also 
evidence in the sea lamprey, based on whole genome sequencing, 
meiotic mapping and analysis of Hox clusters that supports the 
idea of one round of whole genome duplication followed by inde-
pendent segmental duplications in vertebrate evolution (Smith and 
Keinath, 2015, Smith et al., 2018). If similar segmental duplications 
occurred frequently in chordate evolution, it will be challenging to 
precisely define parology relationships between Hox clusters and 
many other gene families (Siegel et al., 2007, Smith et al., 2018). 
Advances in genome sequencing, assembly and lower costs will 
hopefully bring more examples to bear to better understand the 
relative degrees to which genome-wide duplications followed by 
gene loss versus extensive and/or phased segmental duplications 
played key roles in the emergence of vertebrate traits. 

Forty years on, collinearity remains as intriguing today as it did 
when Ed Lewis first described this unique feature of coordinate 
regulation. Spatial collinearity refers to the tight correlation between 
gene order in Hox chromosomal clusters and their nested domains 
of expression along the anteroposterior (AP) axis of animal embryos 
(Duboule and Dollé, 1989, Graham et al., 1989, Lewis, 1978). This 
regulatory feature established a combinatorial code for specifying 
regional diversity of segments and axial structures. Analyses in 
vertebrate embryos and cell lines rapidly expanded the need to 
incorporate other features into collinearity, such as timing and re-
sponse to signaling pathways. Members of the Hox clusters were 
found to display a temporal collinearity, whereby their order along the 
chromosome also correlated with the relative timing of expression 
in development (Izpisua-Belmonte et al., 1991). Retinoic acid (RA) 
is a potent morphogen that impacts patterning of diverse tissues, 
many of which overlap with sites of Hox expression. Treatment of 
human and mouse cell lines with RA was shown to sequentially 
activate Hox genes in a temporal and dose dependent manner 
that aligned with their clustered organization (Papalopulu et al., 
1991, Simeone et al., 1990, Simeone et al., 1991). Comparing 
these different types of collinearity, it emerged that genes at one 
end of a Hox cluster were generally expressed in a more anterior 
regions, activated earlier and were more responsive to RA and the 
expression of each successive gene in the cluster was progres-
sively more posterior, later and less responsive to RA. Conversely, 
posteriorly expressed genes were more responsive to FGF signaling 
compared with anteriorly expressed genes (Bel-Vialar et al., 2000, 
Isaacs et al., 1998, Pownall et al., 1998). 

It was not clear whether these different aspects of collinearity 

represented distinct properties associated with separate regulatory 
mechanisms or they were a consequence of a shared process that 
coupled them to axial patterning. More recent analyses on mecha-
nisms controlling the growth and patterning in vertebrates suggests 
that these different properties of collinearity are intimately linked to 
how nested domains of Hox expression become established and 
integrated during axial elongation (Deschamps and Duboule, 2017). 
Opposing signaling gradients in anterior (RA) and posterior (FGF 
and Wnt) regions are important for setting up cues that regulate the 
balance between growth, differentiation and patterning (Bel-Vialar 
et al., 2002, Deschamps and van Nes, 2005, Diez del Corral et al., 
2003, Diez del Corral and Storey, 2004, van de Ven et al., 2011, 
Young et al., 2009). These axially separated and antagonistic and 
morphogenetic signals are directly interpreted by cis-regulatory 
regions embedded within and around the Hox clusters (Ahn et al., 
2014, Neijts et al., 2016, Neijts and Deschamps, 2017, Parker et 
al., 2016, Parker and Krumlauf, 2017) and indirectly regulated by 
extensive feedback circuits between components of Wnt, FGF and 
RA signaling cascades and Cdx and Hox genes (Deschamps and 
Duboule, 2017). Members of the Hox13 parology group appear 
to represent a break that disrupts this system and leads to termi-
nation of axial growth (Denans et al., 2015, Young et al., 2009). 
Elegant analysis of the timing of Hox activation during gastrulation 
revealed that there was temporal collinearity for members of the 
Hoxb cluster as mesoderm cells progressively ingress along the 
AP axis (Iimura and Pourquie, 2006). Hence, what at first appeared 
to be disparate features of Hox collinearity have been united by a 
deeper understanding of the molecular and cellular mechanisms 
associated with precise coordination of timing, signaling cascades 
and spatial patterning in vertebrate embryogenesis. 

This system may reflect an ancient aspect of the gene regulatory 
network for how nested domains of Hox expression became coupled 
to axial patterning in deuterostomes. Studies in the hemichordate, 
Saccoglossus kowalevskii, revealed that there is a striking similarity 
in the deployment of components of signaling pathways and tran-
scription factors, including Hox genes, that mirrors their alignment 
along the AP axis of the prototypical chordate body plan (Lowe et 
al., 2015, Lowe et al., 2003, Pani et al., 2012). This implies that 
these signaling centers and transcription factor networks may be 
established and maintained through a conserved regulatory logic 
and feedback circuits, that include the ability to generate collinearity 
and nested domains of Hox expression, and they are not dedicated 
to specifying distinct morphological structures. Hox-dependent pat-
terning may therefore become independently coupled to tissues 
and structures in different animal systems through co-option of 
this ancient framework (Parker et al., 2014, Parker et al., 2016, 
Parker and Krumlauf, 2017). This is consistent with the view that 
functional links between vertebrate and invertebrate Hox genes 
and segmentation evolved independently (Tautz, 2004). 

Recent analysis of Hox organization and function in a Cnidar-
ian, brings a new perspective to this idea. Nematostella vectensis 
contain a cluster of three Hox genes, which display spatial and 
temporal collinearity in the radial axis of the larval endoderm (He 
et al., 2018). Gene editing ablation experiments demonstrate that 
these Hox genes have roles in segmentation and segment identity of 
the endoderm and display a form of posterior prevalence. This work 
argues that there may be a very ancient link between segmental 
processes and Hox organization, function and collinearity and led 
to speculation that it is possible the epithelial compartmentation 
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in endodermal pouches of Cnidaria may be related to processes 
associated with axial elongation and mesodermal somites in ver-
tebrates (Arendt, 2018). 

With respect to function, duplication and divergence, collinear-
ity and nested domains of Hox expression presented a series of 
challenging paradigms to investigate. The idea that combinations 
of Hox proteins provide a code for specifying regional identities 
has been validated by genetic gain and loss of function experi-
ments in a wide range of organisms. Yet this raises the question of 
whether each protein in the combinatorial code has a unique role/
contribution or are they interchangeable? The ability to generate 
targeted mutations and knock in gene variants into the mouse 
germline provided a powerful opportunity to explore these kinds 
of questions. This led to a flood of sophisticated genetic analyses 
of genes in the Hox clusters and provided numerous examples of 
redundancy in a variety of tissue contexts among Hox genes within 
a paralog group and between different paralog groups (Condie 
and Capecchi, 1994, Greer et al., 2000, Kmita et al., 2005, Mallo 
et al., 2010, Manley and Capecchi, 1998, Manley and Capecchi, 
1997, Sheth et al., 2016, Tvrdik and Capecchi, 2006, Wellik and 
Capecchi, 2003, Wellik et al., 2002, Wu et al., 2008). Swaps and 
replacements between homeodomains also raised questions about 
the degree of specificity of Hox proteins and in some cases showed 
remarkable plasticity in the ability for Hox proteins to functionally 
compensate for each other (Greer et al., 2000, Tvrdik and Capec-
chi, 2006, Zakany et al., 1996, Zhao and Potter, 2001, Zhao and 
Potter, 2002). This implies that in many contexts it may not be the 
gene/protein itself that it is important but how it is regulated and 
the total dose of Hox proteins. The principles uncovered from these 
findings have been generally applicable to many genes and have 
helped to uncover cases for redundancy, sub-functionalization and 
acquisition of novel activities of duplicated genes. 

An interesting consequence of collinearity is that in many cases 

et al., 2014, Tschopp and Duboule, 2011). Again the principles 
that emerged from this analysis and that of the b-globin gene 
cluster have been incredibly informative and set the stage for cur-
rent mainstream efforts in trying to understand how enhancers, 
promoters, and chromosome topology govern work in a dynamic 
manner to regulate cell and developmental processes (Furlong 
and Levine, 2018). 

The links and contributions made to understanding other as-
pects of gene regulation that have emerged from investigations 
of Hox gene regulation are too numerous to mention and review 
here. However, it is clear that if there is a means of regulating or 
fine-tuning gene and protein expression (microRNAs, lncRNAs, 
translational control, specialized ribosomes, promoter competition, 
bidirectional promoters, mRNA stability, etc.) the Hox clusters are 
likely to incorporate this feature in some context to modulate. During 
embryogenesis the precisely orchestrated control of developmental 
processes depends upon getting the appropriate combinations of 
Hox genes expressed at the right levels, times and spatial distribu-
tions. Perhaps this is a part of what makes Hox genes special and 
gives them epistemic value?

In closing, I would like to end on a personal note. Ed Lewis would 
be excited to see the progress made over the forty years since the 
publication of his landmark paper. It is worth noting that he also had 
a hand in directly shaping the studies of many others in this area. 
In 1988, ten years after his study on BX-C, Denis Duboule and I 
spoke publicly about our discovery of collinearity in the vertebrate 
Hox complexes. Ed heard about this and shared his excitement 
about the findings. A few months later at a homeobox workshop 
organized by Walter Gehring and sponsored by EMBO, Ed shared 
a wealth of ideas from his perspective and many provided many 
ideas to consider. Fig. 1 is a picture of Ed and I in deep discussion 
about collinearity and Hox expression at this homeobox workshop 
thirty years ago. It meant a great deal to me to have such a leading 

Fig. 1. Ed Lewis and Robb Krumlauf discussing Hox collinearity over a poster at a 1988 
homeobox workshop.

functional roles for Hox genes have focused not 
on individual genes but the global function of the 
clusters. For example, in heart, limb, hematopoi-
etic and allantois development entire clusters or 
combinations of clusters need to be deleted or 
have their expression altered to reveal functional 
requirements in patterning (Kmita et al., 2005, 
Lebert-Ghali et al., 2010, Lebert-Ghali et al., 2016, 
Qian et al., 2018, Scotti and Kmita, 2012, Sosh-
nikova et al., 2013, Vieux-Rochas et al., 2013). This 
implies that a critical factor in Hox functionality is 
not the individual genes themselves but how they 
are globally regulated in a coordinate manner. 

The interest in global Hox gene regulation takes 
us back to the early focus Ed Lewis placed on the 
importance of understanding coordinate regulation 
of BX-C and the extensive efforts made over many 
decades to dissect the molecular mechanisms that 
underlie collinearity (Deschamps and Duboule, 
2017, Kmita and Duboule, 2003, Tschopp and 
Duboule, 2011, Tschopp et al., 2009). The elegant 
chromosome engineering experiments by Denis 
Duboule and his colleagues illustrated the im-
portance of enhancer-sharing, global enhancers, 
regulatory landscapes and topological domains in 
controlling the expression of Hox clusters (Lonfat 
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scholar express interest in my work at an early stage in my career. 
This stimulated a long series of fruitful interactions that continued 
until he passed. I wish he were here today to help us unravel some 
of the amazing complexity associated with collinearity. 
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