
 

A snail tale and the chicken embryo
M. ANGELA NIETO*
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ABSTRACT  Some 25 years ago, a clone was identified that contained the chicken Slug sequences 
(now called Snail2 ). How could we anticipate at that time how much the chick embryo would help 
us to understand the ins and outs of cell migration during development and in disease? Indeed, 
the chick embryo helped us identify Snail2 as the first transcription factor that could induce the 
epithelial-mesenchymal transition  (EMT), key for the  migration of embryonic and cancer cells.
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When Claudio Stern contacted me to participate in this Special 
Issue of the Int. J. Dev. Biol., a testimony to the role of the chick 
embryo as a model in developmental biology, my immediate 
thought was to reflect on how a cloning expedition that started 25 
years ago helped us to understand the epithelial to mesenchymal 
transition (EMT), its impact on morphogenesis and its importance 
in biomedicine. In 1992, I was fortunate to be a postdoctoral fellow 
in David Wilkinson’s laboratory at the National Institute for Medical 
Research in London, working in close contact with Robb Krumlauf, 
Robin Lovell-Badge, Jim Smith, Andrew Lumsden and Claudio 
Stern, along with other prominent scientists. It was a fantastic time, 
during which we identified a host of vertebrate genes that were 
homologues of genes previously identified in Drosophila, and that 
had been instrumental in teaching us how embryos can develop 
and establish a body plan. We were embarked on a fishing expe-
dition, to identify genes segmentally-expressed in the hindbrain 
of the mouse after the discovery of Krox-20 and the segmentally 
restricted expression of Hox genes (Wilkinson et al., 1989a; 1989b; 
see Parker and Krumlauf, 2017, for a recent review). Having iso-
lated the mouse Snail homologue (Nieto et al., 1992), we thought 
that we could better understand Snail function if we were to take 
advantage of the amenability of the chicken embryo for experimental 
embryology. As such, and along with Mike Sargent, we set out to 
identify the chick homologue of Snail by screening a cDNA library 
that we made from more than 600 HH10 stage chicken embryos 
obtained over just a few days.

Not only did we find Snail but also, another homologue that 
we initially called “Zip” as it was expressed “at the edges of the 
neural plate during neural tube closure” (as my notes read on 
June 30th, 1992: see Fig. 1A). With the help of Claudio Stern, 
who was optimizing the in situ hybridization protocol for chicken 
embryos, we enhanced the sensitivity of this technique protocol 
and soon realized that this gene was expressed in neural crest 
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cells. We named this gene Slug, as it was a paralogue of the 
chicken Snail gene, and interestingly, we found it in both the pre-
migratory and migratory neural crest populations (Fig. 1B). Years 
later the HUGO Nomenclature committee suggested naming this 
gene Snail2 (Snai2: see Barrallo-Gimeno and Nieto, 2005). The 
pattern of Slug/Snail2 expression was very exciting because at 
that time there were no markers of the premigratory neural crest 
and therefore, the appearance of these cells at the top of the 
neural folds, and their delamination and migration, could only be 
studied using chick/quail grafts as pioneered by Nicole Le Doua-
rin (Le Douarin, 1973). The migratory crest could be tracked by 
labelling it with NC-1, an antibody generated against the quail 
ciliary ganglion by Jean Paul Thiery and that later turned out to 
recognize the same antigen as HNK-1, that was raised against 
a human leukemic cell-line (Tucker et al., 1984). Comparing the 
distribution of Snail2 and HNK-1 in the 2-day-old chicken embryo 
we confirmed that Snail2 was expressed by both the premigratory 
and early migratory neural crest (Fig. 1C,D). Interestingly, Snail2 
was not expressed in neural crest derivatives, already suggesting 
that its role could be related to cell movement rather than to cell 
fate. At this point, at the end of 1992 and having just analysed the 
expression pattern of this gene, I returned to Spain to set up my 
laboratory at the Cajal Institute in Madrid.

The epithelial to mesenchymal transition and its 
connection with tumour progression

Although important and often very useful, patterns of expres-
sion do not always help understand gene function, although it was 
clear that this transcription factor could play an important role in 
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the early embryo. Indeed, in addition to the neural crest, it was 
also expressed strongly in the primitive streak and by the cells that 
delaminate from it: the early mesoderm and the precursors of the 
definitive endoderm. I had learned to culture chick embryos with 
Jonathan Cooke, and when we cultured and incubated them with 
antisense oligonucleotides to block these genes, we saw the most 
striking phenotype whereby cells were unable to delaminate and 
migrate from either the neural tube or the primitive streak (Nieto et 
al., 1994). Inspired by Ruth Bellairs´ concept of mass migration in 
development, and her comparison between the neural crest and 
the primitive streak in the chick embryo (Bellairs, 1987), it was 
clear that this transcription factor was regulating the so-called 
epithelial-mesenchymal transition (EMT), first studied by Betty 
Hay in the 60´s and also in the chick (Hay, 1968; Hay, 1995). Es-
sentially, cells born far from their final destination implement this 
programme in order to delaminate, migrate and populate different 
regions of the embryo.

The fact that we could simultaneously observe the premigratory 
and the migratory crest populations facilitated the description and 
analysis of the neural crest under different experimental condi-
tions, something that was immediately appreciated by Nicole Le 
Douarin who was extremely supportive of our work from the very 

beginning (Le Douarin et al., 1994). We continued our collaboration 
with Dave Wilkinson and Marianne Bronner using Snail2 alone as 
a marker (Nieto et al., 1995). Experiments were carried out jointly 
in Spain, the UK and US, proving to be a truly fantastic example 
of collaborative work and publishing the results before I had even 
met Marianne in person. The chick embryo has continued to be 
a key model in the analysis of developmental processes (Stern, 
2005; Gerety et al., 2013) and in particular, of the neural crest (Le 
Douarin and Dieterlen-Lièvre, 2013; Martik and Bronner, 2017, and 
references therein), for which Nicole and Marianne have played 
instrumental roles (see Fig. 2).

When we first described the phenotype of Slug/Snail2 defec-
tive chick embryos, we proposed that “pathological activation 
of Slug or of functionally related genes could contribute to the 
onset of the invasive or metastatic phenotype during the progres-
sion of cancers of epithelial origin, because the ability to break 
through an epithelial basement structure is reminiscent of the 
mechanism by which mesoderm and the neural crest originate” 
(Nieto et al., 1994). Although it took us several years, along with 
Amparo Cano we finally showed that Snail was indeed activated 
in dedifferentiated carcinomas, and at the same time as Antonio 
Garcia de Herreros in Barcelona, that Snail acted as a repressor 
of E-Cadherin transcription (Cano et al., 2000; Batlle et al., 2000; 
Blanco et al., 2002), the loss of which was known to be fundamental 
for the transition from adenoma to invasive carcinoma (Behrens 
et al., 1989; Perl et al., 1998). Snail proteins could induce a cel-
lular transition compatible with the EMT (Fig. 3) and reminiscent 
of that observed in a new fibroblastic cell type originated from 
tumour-derived mammary epithelial cells (Dulbecco et al., 1981) 
and when epithelial carcinoma bladder cells were incubated with 
epidermal growth factor (EGF: Boyer et al., 1988; 1992). Other 
transcription factors from different gene families have been later 
shown to induce EMT and they may be reactivated at the invasive 
front of carcinomas of different aetiologies (see Ye and Weinberg, 
2015; Nieto et al., 2016, for recent comprehensive reviews). 

The dynamics of the EMT is complex and it is a transient 
process; tumour cells reacquire epithelial traits to engage in 
metastatic colonization, as do migratory embryonic cells upon 
reaching their destination. Moreover, it has proven difficult to 
generate appropriate animal models that can follow the whole 
process. Accordingly, it has been extremely difficult to study how 
EMT influences the progression of carcinomas. For instance, it 
has not been possible to reliably observe tumour cells all the way 
from the primary tumour to the metastatic site, fuelling discussion 

Fig. 1. Expression of Slug/Snail2 
in the chick neural crest. (A) Early 
expression at the edges of the neu-
ral plate. (B) Note the expression in 
both the premigratory and migratory 
populations. (C, D) The latter is better 
assessed when compared with that 
of the migratory crest marker HNK-1. 
Adapted from Nieto et al. (1994) and 
Del Barrio and Nieto (2002).

Fig. 2. Meeting during the FEBS-EMBO 2014 Conference in Paris. The 
conference celebrated the 50th anniversaries of FEBS and EMBO and the 
100th anniversary of the French Society for Biochemistry and Molecular 
Biology. The author with Marianne Bronner (left) and Nicole Le Douarin 
(middle).
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and encouraging those working in the field to design models better 
optimized to understand these processes. Indeed, the EMT and its 
significance in the initial steps of the metastatic cascade remain 
the subject of some debate (Brabletz et al., 2017). Ironically, as 
early as 1890 Cajal already noticed this cellular transition and its 
implication in the invasive potential of breast carcinoma (Ramón 
y Cajal, 1890a; Text and Fig. 48 in the first Edition). Interestingly, 
and in the context of this special issue dedicated to the chick 
embryo, Cajal’s neuronal theory, that neurons were individual 
entities, was formulated on the basis of his studies of the axons 
sprouting from spinal commissural neurons in the chick embryo 
(Ramón y Cajal, 1890b).

In summary, the importance of the EMT in tumour progression 

and in other diseases would have surely remained elusive without 
the contribution of the instrumental studies carried out on chicken 
embryos. These studies defined the cellular events associated 
with the EMT and many of the fundamental elements involved. 
Going back to the Snail genes, unexpected findings often made 
them somewhat difficult to work with, issues that over time have 
developed into interesting evo-devo and tissue-specific stories, 
the nature of which I will outline below.

Were the test tubes switched or is evolution playing 
tricks on us?

After finding that in the chick embryo, Snail2/Slug was required 
by cells in the neural tube and primitive streak to delaminate, and 
having connected this event with cancer, it was clear that we 
needed to study this process in mammals. We set out to better 
characterize Snail and Slug in the chick and mouse, and we were 
frankly dismayed when we studied their expression patterns, as 
we seemed to have somehow swapped the test tubes in the lab. 
Indeed, the pattern of Slug expression in the mouse was not only 
different from what we had seen in the chicken but significantly, 
it was very similar to that of Snail in the chick (Fig. 4). Eventually, 
it dawned on us that the main expression domains of Snail and 
Slug were interchanged between the chick and mouse (Sefton et 
al., 1998). As such, we predicted that the Slug mutant mice would 
probably not have a gastrulation or strong neural crest phenotype, 
as this gene was rather expressed in subpopulations of migratory 
mesoderm and neural crest cells. This was confirmed by Tom 
Gridley (Jiang et al., 1998), who later also showed that it was 
in fact the Snail rather than the Slug gene that was required for 
EMT in the gastrulating mouse embryo (Carver et al., 2001). By 
then, we had already drawn the connection between E-cadherin 
and cancer cells, also confirming that Snail was the prominent 
family member for EMT in mammalian cells (Cano et al., 2000).

After observing how the expression domains of chick and mouse 
Snail and Slug had been swapped around, we started another 
fishing expedition to isolate Snail genes in representatives of all 
the vertebrate groups. We found an unprecedented degree of 
reshuffling in the expression domains of these genes, some of 
which could be explained by neofunctionalisation or subfunction-
alisation, whereas others did not fit the models of tissue-specific 

Fig. 3. Epithelial cells (MDCK cell line) undergo epithelial to mes-
enchymal transition (EMT) upon activation of Snail2/Slug. Images 
show cells grown in 2D or embedded in Matrigel (3D). In Matrigel, MDCK 
cells form epithelial ducts, whereas Snail2-expressing MDCK cells form 
mesenchymal networks.

Fig. 4. The expression patterns of Snail1 and Snail2 are interchanged in the premigratory neural crest and the early mesoderm in the chick 
and the mouse. Adapted from Sefton et al. (1998) and Nieto (2002).
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enhancer rearrangement during evolution (Locascio et al., 2002). 
In fact, more recently we also observed that the role played by 
E-cadherin at gastrulation stages in the mouse is likely played by 
P-cadherin in the chick (Acloque et al., 2017).

Another recent example of this phenomenon is the case of 
L/R asymmetry and organ positioning. Perhaps it should be of 
no surprise that the chick embryo has been at the centre stage 
of research into organ positioning for many years. The seminal 
experiments describing transient activation of the Activin receptor-
Shh-Nodal-Pitx2 pathway on the left side of the embryo were per-
formed in the chick (Levin et al., 1995; Logan et al., 1998; Piedra 
et al., 1998; Ryan et al., 1998; Yoshioka et al., 1998). Moreover, 
Snail was shown to be expressed more strongly on the right side 
of the chick embryo, where it repressed Pitx2 expression (Patel 
et al., 1999). Therefore, the model was that organ positioning, 
and heart situs in particular, was driven by conferring left-handed 
information to the left side of the embryo and excluding it from 
the right. However, although the expression of Pitx2 in the chick 
and mouse embryos is very similar and restricted to the left lat-
eral plate mesoderm, Pitx2 mouse mutants do not display heart 
looping defects but rather, they develop cardiac right isomerism 
–the absence of a left-hand side and the presence of a mirror 
image duplication of right-hand morphological features (Lin et al., 
1999; Campione et al., 2001). Indeed, Pitx2 is crucial to impart 
left-handed information (Raya and Izpisua-Belmonte, 2006) and 
for axis formation (Torlopp et al., 2014), yet not for heart looping. 
Importantly, heart looping seems to be independent of Nodal in 
the zebrafish (Noël et al., 2013). In addition, the development and 
position of the proepicardium, a transient right-specific structure in 
frogs and avians, is not affected by aberrant bilateral Pitx2 expres-
sion (Schlueter and Brand, 2009). Together, these data suggest 
that as well as the left-handed pathway, an additional instructive 
pathway might exist that conveys information from the right hand 
side of the embryo. As such, Prrx1, another transcription factor 
containing an OAR transactivation domain like Pitx2, is activated 
by BMP more prominently on the right flank and its downregula-
tion induces mesocardia in the zebrafish (Ocaña et al., 2017: Fig. 
5). Interestingly, like Snail, Prrx induces EMT in embryos and 
cancer cells (Ocaña et al., 2012), suggesting that there might be 
some common features between the EMT and the mechanisms 
that drive heart looping. In fact, L/R asymmetric Prrx1 expression 

and accordingly, L/R asymmetric EMT, drives asymmetric cell 
movements and forces that produce a leftward displacement of 
the posterior pole of the heart and hence, normal looping (Ocaña 
et al., 2017). Once again, it seemed strange that Prrx1 mutant 
mice did not display heart-positioning defects (Bergwerff et al., 
2000). However, the expression of Prrx1 in the region relevant for 
heart looping in the fish had been substituted by that of Snail1 in 
the mouse. This explains the lack of a heart laterality phenotype 
in the Prrx1 mutants and the heart looping defects described in 
Snail1 mutant embryos (Murray et al., 2006). Here is when the 
chick embryo helped us again. Both Prrx1 and Snail1 contribute to 
heart looping in the chick, as they are expressed in complementary 
patterns in the relevant territories, an intermediate situation to that 
found in the fish and mouse. Functional analysis in the three model 
systems confirmed that an asymmetric L/R EMT, more prominent 
on the right, drives heart looping in vertebrates, significantly through 
a conserved cellular morphogenetic process driven by different 
EMT inducers over the course of vertebrate evolution (Ocaña 
et al., 2017). This has important implications, particularly since 
heart looping is crucial for the concordance between the heart 
and the vasculature. Defects in L/R asymmetry arise in 1/10,000 
humans, and the associated morbidity and mortality are usually 
associated with congenital heart defects (CHDs: Lin et al., 2014; 
Ramsdell et al., 2005).

In summary, in some of the experiments described here, evolu-
tion seems to have been playing with us. In one case, different gene 
family members, generated following whole genome duplications 
at the base of the vertebrate lineage (Mclysaght et al., 2002), play 
the same role in different species. For heart positioning, the cellular 
process is conserved but the transcription factor used belongs to 
a different gene family. Importantly, all of the above, has taught 
us that if we really want to understand what particular genes do 
and how they are integrated into a developmental or pathological 
process, we need to study different models before we can ex-
trapolate data obtained from a single species or vertebrate group 
to others. This is particularly important when translating studies 
performed in animal models into medical research. We now try 
to address our questions simultaneously in the chicken, mouse 
and fish, even though this implies a more significant effort. As a 
result, in all our projects we can guarantee that the chick embryo 
will always be there to help us tell the complete tale.

Fig. 5. A differential left-right EMT regulates heart laterality in vertebrates. In addition to the well-known left-specific Nodal-Pitx2 axis, a BMP-
induced EMT program, more prominent on the right side, triggers the leftward displacement of the posterior pole of the heart. The EMT-TFs used vary 
in different vertebrate groups. Adapted from Ocaña et al., (2017).
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