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ABSTRACT  The vertebrate brain is arguably the most complex anatomical and functional structure 
in nature. During embryonic development, the central nervous system (CNS) undergoes a series of 
morphogenetic processes that eventually obscure the major axes of the early neural plate to our 
perception. Notwithstanding this complexity, the “genoarchitecture” of the developing neural tube 
brings into light homologous regions between brains of different vertebrate species, acting as a 
molecular barcode of each particular domain. Those homologous regions and their topological inter-
relations constitute the ancestral, deeply conserved, bauplan of the vertebrate brain. Remarkably, 
although simpler, the cephalochordate amphioxus shares multiple features of this bauplan, serving 
as a privileged reference point to understand the origins of the vertebrate brain. Here, we review 
the development of the chordate CNS in view of the latest morphological and genoarchitectonic 
data from amphioxus. This comparison reveals that the amphioxus CNS is far from simple and 
provides unique insights into the structure of the vertebrate CNS and its evolutionary origins. In 
particular, we summarize recent research in amphioxus and vertebrates that has challenged views 
on the major partitions of the vertebrate brain, proposing a novel organization of the chordate CNS 
bauplan that better reflects developmental and evolutionary data. 
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Introduction

Homology is a fundamental concept in biology and one of the 
key pillars of comparative embryology. Therefore, it is not surprising 
that since its early years, Evo-Devo researchers have discussed 
whether anatomy or gene expression are better indicators of “strict” 
homology (“the same organ in different animals under every variety 
of form and function”, Owen 1843, pp.379). These controversies 
started soon after developmental gene expression data from single 
genes were first compared between two species (e.g., Abouihef et 
al., 1997, Wray and Abouihef 1998), and still persist in the postge-
nomic era (Tschopp & Tabin, 2016), when entire transcriptomes 
can be compared. 

It is not surprising, then, that searching for homologies, diver-
gences, and innovations in the most complex and fascinating structure 
in nature – the central nervous system (CNS) of vertebrates – has 
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been, and surely will be, the subject of study from very different per-
spectives by many researchers. Currently, there are large amounts 
of gene expression data that can be used as topological markers in 
the developing vertebrate CNS. As all vertebrate neural tubes are 
homologous and develop under similar principles, it is generally 
assumed that gene expression patterns, which provide positional 
information and give insights into the specification and maintenance 
of brain derivatives, are, overall, good markers of homology (Morona 
et al., 2011, 2016). However, comparisons between vertebrate and 
non-vertebrate CNS are more challenging, as similarity of (relative) 
gene expression patterns are evaluated between highly diverse, 
and often quite dissimilar, anatomical structures, without a clear 
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homologous topological reference. Hence, the study of amphioxus, 
which has a centralized CNS that develops from a neural plate that 
is unambiguously homologous to that of vertebrates, has been 
particularly useful to shed light into how the CNS of vertebrates has 
originated and evolved.

Here, after an introduction to the key phylogenetic position of 
the amphioxus in the path to vertebrates, we review classic and 
recent studies on vertebrates and cephalochordates to provide a 
comparative view of the development and morphology of their CNS. 
We begin by setting the conceptual framework of our comparisons: 
comparative neuroanatomy and the prosomeric model. We will then 
review recent results suggesting a novel ontogenetic organization 
of vertebrate brain regions as inferred from comparative studies 
with amphioxus, and, finally, we will discuss the impact of this 
organization on our understanding of key adult brain structures in 
cephalochordates.

The amphioxus: key to understanding chordate and 
vertebrate transitions

For centuries, amphioxus has attracted the attention of zoologists, 

embryologists and, since 1980’s, also of molecular biologists. First 
described by Peter Simon Pallas as a molluscan slug in 1774 (Pallas, 
1774), later classified as a close relative of agnathan vertebrates, 
hagfish and lampreys (Costa, 1834), its phylogenetically privileged 
position is now thought to be that of being the most basal-branching 
extant chordate (Delsuc et al., 2006). In this Special Issue of the 
Int. J. Dev. Biol., readers can learn about the fascinating quest of 
several research groups to collect, get to reproducing in captivity, 
and work with amphioxus embryos, first using large amounts of 
radioactive 32P probes, then performing many PCRs, and from strug-
gling for genome sequencing funding to, of late, trying all available 
and possible gene modification protocols (see Holland, this issue).

Cephalochordates share the chordate phylum with the Olfac-
tores (Urochordata and Vertebrata) (Delsuc et al., 2006), with an 
estimated time of divergence from the last common ancestor at 
around 550 million years ago (Blair and Hedges, 2005; Delsuc et 
al., 2008). The main characteristic of chordates is the presence of a 
notochord, which extends along much of the body; in the particular 
case of cephalochordates, the notochord seems to extend beyond 
the most anterior tip of the neural tube (Fig. 1A), although this 
anterior-most part has been suggested to be homologous to the 

Fig. 1. Amphioxus anatomy and neural system. (A) Schematic representation of an adult amphioxus, indicating major anatomical structures. (B) In-
nervation of the adult amphioxus, dorsal nerves 1, 2, 3… (n1, n2, n3…), infundibular organ (io), notochord (chd), Kölliker’s pit (Köp), Joseph cells (cJo), 
nucleus of Rohde (nRo), Rohde cell (cRo), Hatschek’s pit (Hp), inner labial muscle (ilm), external labial muscle (elm), buccal cavity (bc), velar sphincter 
muscle (vsm), pterygeal muscle (pm), gonad (gon), organ of Hesse (oHe), trapezius muscle of atriocoelomic funnel (tm), atriopore sphincter muscle 
(atsm), anal sphincter muscle (ansm). (C) Detail of innervation in the most anterior tip, velar plexus (vp), inner buccal plexus (ibp), outer buccal plexus 
(obp), first cell of Rohde (arrow), Hatschek’s pit (white arrowhead), anastomosis between nerves 1 and 2 (open arrowhead), two of the neuromuscular 
contact zones (black arrowheads). (D) Schematic representation of the neural tube (dorsal view, anterior is up). (B,C) Reproduced with slight modifica-
tions from Witch and Lacalli (2005, © 2008 Canadian Science Publishing or its licensors, reproduced with permission). (D) Adapted from Lacalli (1994). 
Anterior is to the right and dorsal is up in (A,B,C).
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prechordal plate (see below). The very name of amphioxus is in 
fact an allegory of its shape (amphis = both, oxys = sharp). Unlike 
vertebrates, the amphioxus notochord is maintained throughout 
life and is the only skeletal structure present in the adult body. The 
hollow neural tube, which is dorsal to the notochord, is another of 
the morphological characteristics shared with vertebrates, in ad-
dition to the gill slits in the pharynx, the myomeres (or segmental 
muscle “bricks”), and the post-anal tail (Garcia-Fernàndez and 
Benito-Gutiérrez, 2009)

Not only has its prototypical body plan (bauplan) and phyloge-
netic position enticed evolutionary biologists, but also its genome 

2010; Puelles and Rubenstein, 2015). This model proposes that the 
vertebrate CNS is composed of basic units of neural development, 
the neuromeres, whose organizational principles are identifiable in 
the longitudinal and transversal axes across all studied vertebrate 
species (Fig. 2 B-B’’). The prosomeric model facilitates comparisons 
across vertebrate species, since neuromeres refer to the ‘intrinsic’ 
axes, as established in the early neural plate, instead of the ‘extrinsic’ 
axes that had been used in other neuroanatomic approximations 
(Kuhlenbeck, 1967; Puelles and Rubenstein, 1993), and which are 
greatly affected by the complex morphogenetic events undergone 
by the neural tube upon closure (Fig. 2).

Fig. 2. Chordate neurulation and vertebrate central nervous system development. 
The vertebrate (A) and amphioxus (A’) neural plate (dorsal view) fold (A’’, A’’’) to form 
the neural tube (A’’’’) similarly, generating a hollow nerve tube that closes dorsally by the 
roofplate (rp). (B) Schematic lateral views of bending of the vertebrate neural tube as a 
result of differential growth, resulting in an arching of its internal axis (red dotted line). Some 
neuromeres are indicated as the regionalization of the neural tube proceeds (grey dotted 
lines). The forebrain is subdivided into secondary prosencephalon (SP) with peduncular 
and terminal prosomeres (hp1 and hp2, respectively), which include the hypothalamic 
region, telencephalon (T), and the optic vesicles, and Diencephalon (D), with prosomeres 
1, 2, and 3 (p1–p3), which are represented by the pretectum (PT), thalamus (Th), and 
prethalamus (PTh), respectively. More caudally, midbrain (MB), romboencephalon(Rh), 
and spinal cord (SC) regions are identified (for simplicity, their respective neuromeric 
components are not depicted). The position of the secondary organizers zona limitans 
intrathalamica (ZLI) and the isthmic organizer (IsO) are represented by blue spikes. 
Lateral view. Dark grey represents floorplate (fp) in all schemes; terminal hypothalamic 
prosomere (Thy), peduncular hypothalamic prosomere (PHy). A/R, anterior/rostral; P/C, 
posterior/caudal; D, dorsal; V, ventral. Adapted from Albuixech-Crespo et al., (2017). 
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is highly remarkable. One of the first genes cloned in 
amphioxus (Holland et al., 1992) supported the notion 
that the amphioxus had a prototypical genome with 
respect to the vertebrate – namely human – genome. 
In 1994, after the cloning of the single amphioxus Hox 
gene cluster (Garcia-Fernàndez and Holland, 1994), 
Peter Holland together with one of the co-authors here 
(back when they were both very young) and other 
colleagues, proposed that the origin of vertebrates 
was linked to the double duplication of an ancestral 
genome that was very similar to the present amphioxus 
genome, the so-called 2R hypothesis (Holland et al., 
1994). Susumu Ohno already noticed the potential of 
gene duplication in evolution years before, based on 
earlier measures of genome size, and even proposed 
than the genome was duplicated somewhere in the path 
to vertebrates (Ohno, 1970). But it was not until 2005, 
with the publication of the first urochordate genome 
(Dehal and Boore, 2005), and definitely in 2008, with 
the publication of the amphioxus genome sequence 
draft (Putman et al., 2008), that this hypothesis was 
corroborated: about 95% of the human genome could 
be traced back to a double polyploidisation of an 
amphioxus-like genome. In these 14 years, the idea 
that those new genes were instrumental to the morpho-
logical innovations of vertebrates shifted subtly from 
emphasizing additional protein-coding sequences to the 
relevance of duplication and innovation of regulatory 
sequences, through the Duplication, Degeneration, 
and Complementation model (the DDC model, Force 
et al., 1999), or the Duplication, Degeneration, and 
Innovation model of regulatory DNA (the DDI model, 
Jiménez-Delgado et al., 2009). More recently, the link 
between genome duplication and epigenetic changes 
(Acemel et al., 2016) also supports the view that the 2R 
events at the origin and early evolution of vertebrates 
were instrumental to the path that led to us, humans.

In this review, we will show how amphioxus has also 
illuminated the origin and evolution of the vertebrate 
CNS, arguably the most paramount and defining organ 
of our clade.

Conceptual framework: the prosomeric model 

A major breakthrough in our understanding of the 
bauplan of vertebrate CNS came with the publication 
of the prosomeric model by Puelles and Rubenstein 
(Puelles and Rubenstein, 1993;Puelles, 1995; Puelles, 
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These primary axes are easy to identify in the early neural plate 
(Fig. 2A). The anteroposterior (AP) axis overlaps the longitudinal 
axis, whereas the mediolateral axis will correspond to the dorso-
ventral (DV) axis after neural tube closure, in which the neural 
plate midline and border will become the neural tube floor and 
roof, respectively. Interestingly, this layout results in an anatomical 
singularity in the neural plate, since the presumptive basal (ventral) 
plate, alar (dorsal) plate and roof run concentrically across the floor 
in the anterior and posterior tips of the neural plate (Fig. 2A, B-B’’). 
As development progresses, the AP axis bends due to the differ-
ential growth of different territories of the neural tube (Fig. 2 B-B’’). 
Despite this bending, each neuromere is established according to 
its position with respect to the AP axis (Fig. 2B). Moreover, the DV 
axis maintains its orthogonal relationship with the AP axis. Thus, 
the prosomeric model organically defines the basic developmental 
units of a tissue whose morphology is highly variable and plastic, 
assisting comparisons between neuroanatomies of equivalent 
bauplans (Puelles and Rubenstein, 1993; Puelles, 1995; Puelles 
and Rubenstein, 2015).

Moreover, an additional crucial aid for comparative neuroanatomy 
is provided by gene expression patterns. During the development 
of the CNS, different populations of neural progenitors are estab-
lished based on their molecular codes. The pool of transcriptionally 
active genes is different for each particular group of cells, and the 
dynamics of these specification processes eventually result into 
positional identities in the neuroepithelium, what is known as neu-
ral patterning. This relationship between specific spatiotemporal 
gene expression patterns and the positional identity of the neural 
progenitors is the basis for the genoarchitecture. This concept has 
been exploited by Evo-Devo approaches, facilitating comparisons 
of developing vertebrate brains and allowing direct homology as-
signments (Ferran et al., 2007; Ferran et al., 2009; Medina et al., 
2011; Puelles and Ferran, 2012). Similar approaches have also 
been undertaken to compare domains between more distantly 
related species. In particular, similarity of relative gene expression 
patterns along the AP axis have received much attention, reaching 
the conclusion that a subset of genes have likely maintained their 
relative AP positions since the last common ancestor of Bilateria 
(Lowe et al., 2003; Castro et al., 2006; Hirth, 2010; Irimia et al., 
2010). However, as mentioned above, these inferences are often 
obscured by unavoidable problems encountered when comparing 
highly divergent CNSs.

Secondary anteroposterior organizers: major players in 
vertebrate brain development and evolution

The vertebrate CNS becomes regionalized along its AP axis very 
early in development. At the neural plate stage, expression patterns 
of genes such as Otx2, Gbx2, Fezf, Irx or Pax6 start establishing 
molecular subdivisions (Hidalgo-Sánchez et al., 2005; Rodríguez-
Seguel et al., 2009). As development proceeds, the neural tube 
closes, bends, and the classical general AP subdivisions become 
morphologically apparent: the prosencephalon (which will be further 
subdivided into secondary prosencephalon and diencephalon), 
the midbrain, the rhombencephalon and the spinal cord. All these 
large AP domains will progressively regionalize and subdivide into 
neuromeres. For example, the rhombencephalon will metamerize 
into 11 rhombomeres (the neuromeres of the rhombencephalon), 
and the diencephalon into 3 prosomeres, with distinctive alar 

components: the prethalamus (p3), the thalamus (p2) and the 
pretectum (p1), in a rostrocaudal order (Puelles and Rubenstein, 
1993; Puelles, 1995) (Fig. 2).

Many of these subdivisions are orchestrated by the action of 
the secondary organizers (blue dashes in Fig. 2B’’). An organizer 
is a cellular domain that releases particular regulatory morpho-
gens that act upon its neighboring tissues. Three main secondary 
AP organizers have been described for vertebrates, the anterior 
neural ridge (ANR), located in the most rostral part of the neural 
tube; the zona limitans intrathalamica (ZLI), located between the 
prethalamus and the thalamus, and the isthmic organizer (IsO), 
which develops in the boundary between the midbrain and the 
rhombencephalon. Each of these organizers releases a specific 
combination of morphogens that influences the development of the 
surrounding structures. In particular, the ANR expresses Fgf8, which 
is essential for the correct regionalization of the prosencephalon 
and necessary for the correct formation of the telencephalon, a 
dorsal outgrowth of the secondary prosencehalon (Kiecker and 
Lumsden, 2012; Vieira et al., 2010). The reference morphogen in 
the ZLI is Shh, which is crucial for the differential specification of 
the thalamus (Crossley et al., 1996; Chi et al., 2003; Vieira et al., 
2005; Hirata, 2006; Vue et al., 2009). Regarding the IsO, Fgf8 acts 
again as morphogen, but in this case together with Wnt1. This lat-
ter region can be identified from very early stages of development 
by the apposition of the expression patterns of Otx2 and Gbx2, 
which act antagonistically and are crucial to define the position 
and function of the IsO (Hidalgo-Sánchez et al., 2005; Kiecker 
and Lumsden, 2012).

Interestingly, the organizers and their associated genetic net-
works have been conserved since the origin of vertebrates (Osorio 
et al., 2005). However, the extent of evolutionary conservation is 
under debate when larger phylogenetic distances are considered, 
namely between vertebrates and other chordates or other deutero-
stomes (e.g. hemichordates). Several articles in recent years have 
discussed the presence/absence and homology/convergence of 
secondary organizers and their potential functionality as bona fide 
organizers (see Holland et al., 1997; Kozmik et al., 1999; Shimeld, 
1999; Lowe et al., 2003; Takahashi and Holland, 2004; Lowe et 
al., 2006; Denes et al., 2007; Hirth, 2010; Steinmetz et al., 2011; 
Pani et al., 2012; Arendt et al., 2015; Yao et al., 2016, for engaging 
discussions and controversies). As expected, one of the clades at 
the center of these controversies is the cephalochordate amphioxus.

The amphioxus CNS: challenging major subdivisions 
of the vertebrate brain

The amphioxus CNS is composed of a neural tube placed dor-
sally to the notochord (Fig. 1). Rostrally, the notochord continues 
in appearance beyond the extension of the neural tube, although 
the anterior-most tip of the notochord has been proposed to be a 
homolog of the vertebrate prechordal plate (Albuixech-Crespo et 
al., 2017). A subtle widening in the anterior part of the neural tube, 
which corresponds to the cerebral vesicle, is barely noticeable in 
the adult, although this swelling is much more obvious at larval 
stages. Beyond this, there are neither anatomically recognizable 
neuromeres nor other morphological landmarks in the amphioxus 
neural tube to easily identify a segmental organization besides 
the visible dorsal nerves arranged in series (Fig. 1). However, 
examination at the histological and cellular level reveals visible 
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histoarchitectonic differences in the AP and DV axes in larvae as 
well as in adults, which reflect differences or subdivisions between 
regions along the neural tube (Wicht and Lacalli, 2005) (Figs. 1 
and 2; for detailed descriptions and cyto- and histo-architecture 
of the amphioxus nervous system, see Lacalli (this issue, and 
references therein)).

These differential histoarchitectonic arrangements imply that 
there must be a subjacent molecular regionalization of the amphi-
oxus CNS. In fact, many genes involved in neural development 
in vertebrates are also expressed in cephalochordate neural de-
velopment. Literature that describes, compares and establishes 
correspondences between expression patterns of genes involved 

Fig. 3. Ontogenetic correspondences and proposed homologies between cephalochordates and vertebrates CNS. (A) Summary of all identified 
anteroposterior and dorsoventral partitions of the neural plate of amphioxus, dorsal-view scheme, anterior is to the left. Hypothalamo-prethalamic pri-
mordium (HyPTh), DiMesencephalic primordium (DiMEs), Rhombencephalo-Spinal primordium (RhSp). S1-S6 indicates the relative position of the six 
most anterior somites. (B-B’’) Topological comparison of major molecular subdivisions between an ancestor with a bipartite brain (B), cephalochordates 
(B’) and vertebrates (B’’). Archencephalic prototagma (ARCH), deuteroencephalic prototagma (DEU). The amphioxus DiMEs seems to be homologous 
to the thalamus (p2), pretectecum (p1) and midbrain (MB), whereas the diencephalon (DI) is neither an ontogenetic nor an evolutionary unit, as the 
prethalamus (p3) is derived from a vertebrate-specific subdivision of the HyPTh. Gene expression domains of relevant genes (Otx, Gbx, Fezf and IrxB) 
that mark the three main subdivisions of the chordate brain are indicated below. (C-C’) Correspondence of the three main subdivisions (colour coded) of 
the neural plate to the larval stages of amphioxus (C) and a representative neural tube of vertebrates (C’). Blue spikes indicate the secondary organizers 
IsO (left) and ZLI (right) in C’. Primary motor center (PMC), hindbrain (HB). Adapted from Albuixech-Crespo et al., (2017).
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in vertebrate and amphioxus neural regionalization is abundant. 
Very recently, some of us with our collaborators (Albuixech-Crespo 
et al., 2017) mapped the expression of 48 genes whose orthologs 
in vertebrates have a well-established morphological interpretation 
within the prosomeric model. These mappings were done at a single 
developmental stage of amphioxus (7-somite neurula stage), allow-
ing homochronic comparisons of gene expression patterns. With 
these data, the authors proposed a genoarchitectonic model for 
amphioxus consistent with the prosomeric model (Fig. 3). As previ-
ously suggested (Castro et al., 2006), this model proposes that the 
incipient amphioxus neural tube is molecularly divided into a rostral 
archencephalic (ARCH) domain and a caudal deuterencephalic 
(DEU) domain from very early stages, similarly to vertebrates. This 
division is highlighted by the abutting expression domains of Otx 
and Gbx. Furthermore, the amphioxus ARCH has two major sub-
divisions, which we termed Hypothalamo-Prethalamic primordium 
(HyPTh; further subdivided into Rostral-HyPTh, Interm-HyPTh and 
Caudal-HyPTh) and Di-Mesencephalic primordium (DiMes) (Fig. 
3B), whose boundary is defined by the abutting expression of Fez 
on the most caudal HyPTh domain (Caudal-HyPTh) with that or the 
Irx genes in the DiMes. In contrast, and as mentioned above, the 
vertebrate ARCH is traditionally divided into three main regions, 
the secondary prosencehalon (hypothalamus plus telencephalon), 
the diencephalon (pretectum, thalamus and prethalamus) and 
the midbrain. Remarkably, considering its topological position 
relative to several markers as Fez and Irx, the Caudal-HyPTh 
may be homologous to the vertebrate prethalamus. In addition, 
the small amphioxus DiMes, consisting of two rows of cells along 
the AP axis at the mid-neurula stage, seems to be homologous to 
the thalamus, pretectum and midbrain all together. Therefore, the 
last two observations, together with multiple lines of experimental 
embryological evidence (Gardner and Barald, 1991; Martinez et 
al., 1991; Bally-Cuif et al., 1992; Bloch-Gallego et al., 1996; Vieira 
et al., 2005; Vue et al., 2009; Hirata, 2006), profoundly challenge 
textbook subdivisions of the vertebrate brain: (i) the diencephalon 
loses its coherence as a single entity, since it has neither evolution-
ary nor developmental support, and (ii) the vertebrate thalamus, 

pretectum and midbrain should be considered an evolutionary 
elaboration of an ancestral, perhaps amphioxus-like, DiMes region. 

The hypothesis that the diencephalon is neither an evolutionary 
nor an ontogenetic primordial subdivision of the vertebrate brain 
was further supported by knock-out and knock-down experiments 
in mouse and zebrafish (Albuixech-Crespo et al., 2017). Patterning 
of the DiMes-like territory in vertebrates occurs under the control 
of the secondary organizers ZLI and IsO, which, despite ongoing 
debate, seem to be absent in amphioxus (Shimeld, 1999; Pani et 
al., 2012). Interfering with the vertebrate ZLI turns the thalamic 
region into a pretectum-like territory, ablating the IsO abolishes 
the midbrain and expands the pretectum territory, and a quadruple 
morpholino in zebrafish that alters both ZLI and IsO transforms 
those three DiMes regions of vertebrates (thalamus, pretectum 
and midbrain) into a more molecularly homogeneous structure 
that resembles the amphioxus DiMes region (Fig. 4). Therefore, 
these results suggest a close relationship between the gain or loss 
of secondary organizers during evolution and the origin or loss of 
specific partitions in the brain among the major chordate groups.

Amphioxus genoarchitectonic model provides novel 
insights into the ontogeny of adult structures and their 
homology with vertebrates

Our genoarchitectonic model of the developing amphioxus 
neural tube also sheds light into the ontogenetic origins of several 
larval and adult brain structures, and their possible evolutionary 
relationships with vertebrate derivatives. Ontogenetic assignments 
between adult, larval and embryonic structures and domains 
have many limitations in amphioxus. First, the lack of cell trac-
ing data on the formation of neural derivatives hampers direct 
extrapolations of adult neural populations from early stages of 
development. Second, there is no information about the possible 
migration processes that the progenitor populations of the terminal 
derivatives of the adult neural tube experience. Third, there are 
no robust continuous reference landmarks. Two main references 
have been used in the literature to infer correspondences among 

Fig. 4. Experimental disruption of 
vertebrate secondary organizers 
recapitulates the amphioxus brain. 
(A) Schematic representation of major 
neural compartments (PTh, Th, PT, MB, 
and Rh) around DiMes, delimited by 
the secondary organizers (ZLI and IsO: 
red lines) in wild type (WT) vertebrates; 
solid gray indicates Pax6 expression. 
(B) Abrogation of the ZLI turns the 
thalamic region into a pretectum-like 
territory (PT*). (C) Genetic depletion 
of the IsO abolishes the midbrain 
and expands the pretectum territory 
(PT*). (D) Wild type and (E) quadruple 
morpholino of otx1a, otx2, eng2a, 
and eng2b in zebrafish eliminates ZLI 
and IsO, and thus the whole DiMes 
loses its subdivisions and mimics the 
uniform amphioxus DiMes. Adapted 
from Albuixech-Crespo et al., (2017).
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neural structures. One is the position of these structures respect 
to the myomeres or somites in adults or embryos, respectively. 
Unfortunately, however, it has not yet been proven whether the 
position and the size of myomeres are fixed or permanent in rela-
tion to the neural tube, hampering ontogenetic assignments. The 
other one is innervation, which presents concordances with the 
myomeric asymmetry endorsed by the myoseptal position of the 
neural roots in the neural tube of the adult amphioxus. However, 
these are difficult to extrapolate to early embryos.

Given these caveats, extrapolations on the correspondence 
of the neural derivatives in the adult amphioxus with respect the 
progenitor territories in the neural plate stage during development 
must come from meticulous correlations that include information for 
both its topological position and the combination of gene expres-
sion patterns during neural ontogeny, always keeping in mind that 
gene expression patterns could be very dynamic and that they do 
not provide deep lineage information if considered independently. 
Keeping these limitations in mind, we revise here previous literature 
and propose some ontogenetic correspondences for important 
terminal derivatives of the anterior CNS of amphioxus, and discuss 
their implications to assign vertebrate homologies

Frontal eye and visual system
One of the most visible structures of the amphioxus neural tube 

is the frontal eye, which can be observed from early larval stages. 
The topological position of the frontal eye suggests that it arises 
from the most anterior part of the neural plate (Lacalli, 1996), the 
acroterminal domain (Fig. 3), as it occurs in vertebrates (McMahon 
and Bradley, 1990; Puelles et al., 2012; Puelles and Rubenstein, 
2015; Albuixech-Crespo et al., 2017). The genoarchitecture of this 
area in the neural plate suggests its involvement in the development 
of this photoreceptive structure. Several genes expressed very early 
in amphioxus development are involved in eye structures in a wide 
number of bilaterians, such as Rx, Six3/6 and Lhx2/9 (Zuber et al., 
2003; Kamijyo et al., 2015; Albuixech-Crespo et al., 2017), even 
though the development of the amphioxus frontal eye becomes 
apparent only later in development by the emergence of the cells 
with dendrites and cilia that protrude from the neuropore and by the 
presence of the pigment cup. Remarkably, at larval stages, when 
the frontal eye is evident, the resulting cellular types that form it 
maintain a characteristic genoarchitecture. Both in vertebrates and 
cephalochordates Gi and c-Opsin are expressed in photoreceptors, 
whereas Mitf and Pax2/5/8 appear in pigment cells (Vopalensky et 
al., 2012). In vertebrates, two eye regions develop as a result of 
the splitting of the morphogenetic eye field by the action of signals 
coming from the prechordal mesoderm (Zuber et al., 2003), while 
in amphioxus it stays as a single medial structure. 

The amphioxus frontal eye innervates the neuropile through 
serotonergic neurons (Vopalensky et al., 2012). This neuropile 
develops immediately caudal to the infundibular organ, which marks 
the transition between the anterior vesicle and the posterior region 
of the cerebral vesicle. It projects to the primary motor center (PMC), 
located more caudally, in the region immediately posterior to the 
limit between the 1st and the 2nd myomeres (Fig. 3C). Part of this 
region expresses Pax4/6 in larval stages (Suzuki et al., 2014) and, 
topologically, it seems to correspond to the Pax4/6-positive DiMes 
region described in our genoarchitectonic model (Albuixech-Crespo 
et al., 2017). Interestingly, the frontal eye of amphioxus as well 
as the paired eyes of the lamprey larva project to a photoreceptor 

visual center that is Otx- and Pax4/6-positive, located in the most 
posterior region of the cerebral vesicle in amphioxus larvae, and in 
the caudal prosencephalon in lampreys (Suzuki et al., 2014) (Fig. 
2A). In the latter study, Suzuki and colleagues suggested that the 
mesencephalic optic projections (which are retino-tectal, Pax6-
negative and Otx2-positive) are secondarily developed, specific 
to vertebrates, and implicated in vision image formation. In con-
sequence, the retino-pretectal primary projections, which appear 
in earlier stages of lamprey larvae, would be more similar to the 
ancestral state in vertebrates projecting to a visual Pax6-positive 
center, as it occurs in amphioxus. Lacalli (1996) identified the visual 
center of amphioxus tracking the projections from the frontal eye 
through electronic microscopy, and named it tectum, as a refer-
ence of homology to the midbrain in vertebrates. However, other 
authors concluded that cephalochordates lack a proper homolog to 
the tectal region, based on the absence of expression of Dmbx in 
the amphioxus neural tube (Takahashi and Holland, 2004), which 
is expressed in the midbrain of vertebrates. Our genoarchitectonic 
model of the neural plate of amphioxus described above sheds light 
into the evolutionary common origin for the midbrain, thalamus and 
pretectum of vertebrates from a DiMes-like territory that was likely 
ancestrally involved in visual processing. Based on these data, it 
is tempting to speculate that a DiMes/pretectum-like function was 
ancestral, and that the origin of the midbrain as an independent 
unit could have been linked to the origin of the vision with image 
formation present in vertebrates, but not in amphioxus. 

Balance organ and circadian clock
The topology and morphology of cells associated with the 

circadian clock and the balance organ in the adult amphioxus, 
which are embedded in the ventral commissure and associated to 
the lamellar body (a photoreceptor organ) (Figs. 1D and 3C), as 
well as immunoreactive to GABA, led some authors to propose its 
homology to the mammalian suprachiasmatic nucleus (Anadón et 
al., 1998; Castro and Becerra, 2015). The suprachiasmatic nucleus 
in vertebrates is a derivative of the alar part of the most rostral 
hypothalamic territory (Puelles and Rubenstein, 2015), which is 
Nkx2.2-positive. Also, in vertebrates, Lhx1 (also known as Lim1) 
is involved in the establishment and maintenance of this circadian 
rhythm in the suprachiasmatic nucleus (Hatori et al., 2014). In am-
phioxus, the genoarchitecture of the most rostral part of the neural 
plate is coincident, being Nkx2.2- and Lhx1/5-positive, further sup-
porting the similarity between the two structures. However, the fact 
that vertebrate suprachiasmatic nucleus arises from the alar part of 
the hypothalamus and the amphioxus balance organ is ventral in 
origin casts doubts on the homology between the two derivatives.

Infundibular organ
As mentioned above, the infundibular organ is located in the 

most anterior part of the floor plate of the neural tube (Fig. 3C) 
and secretes Reissner’s fiber to the central canal of the neural 
tube (Olsson et al., 1994; López-Avalos et al., 1997). Its functions 
have not been characterized in amphioxus, although it seems to 
be involved in axon guidance and establishment of commissures 
(Lehmann and Naumann, 2005). Both the amphioxus infundibular 
organ and the vertebrate subcommissural and flexural organs 
(which produce Reissner’s fiber in vertebrates) are formed near 
developing commissures (López-Avalos et al., 1997). The sub-
commissural organ develops in the pretectum (p1) and is the 
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primary and permanent producer of Reissner’s fiber in vertebrates. 
Based on these observations, some authors have proposed its 
correspondence with the amphioxus infundibular organ (Olsson, 
1955; Lichtenfeld et al., 1999). In contrast, the flexural organ is 
located in the most rostral floor plate of vertebrates. Therefore, 
given the topological position of the amphioxus infundibular organ, 
a probable derivative of the HyPTh, it seems more likely that, if 
any, the vertebrate flexural organ is a homolog of the amphioxus 
infundibular organ, even though the secreting action of the flexural 
organ is transitory (Lichtenfeld et al., 1999). However, it is also 
possible these chordate organs carry on analogous functions but 
are not homologous structures.

Lamellar body
The lamellar body (Fig. 3C) has often been proposed as a 

homolog of the pineal gland of vertebrates (Lacalli, 1996). Both 
develop from a Pax4/6-positive territory and are (at least ancestrally) 
photoreceptive structures. However, the amphioxus lamellar body 
seems to develop from the DiMes area, which does not include 
in its genoarchitecture the marker Rx, essential for the develop-
ment of the pineal gland in vertebrates (Ruiz and Anadón, 1991; 
Vopalensky et al., 2012; Rath et al., 2013). Moreover, the lamellar 
body is not immunoreactive to melatonin and does not produce 
the enzymes necessary for its synthesis (Vernadakis et al., 1998; 
Falcón et al., 2014). In addition, all the genes related to circadian 
rhythms in amphioxus are expressed in the balance organ and not 
in the lamellar body (Schomerus et al., 2008). Therefore, despite 
its similar topology, the proposed homology between the lamellar 
body and the pineal gland of vertebrates is not fully conclusive.

Concluding remarks

Although morphologically much simpler than vertebrates, a 
detailed genoarchitecture analysis of the amphioxus CNS has 
revealed a high level of complexity. Furthermore, it has shown 
many similarities to vertebrates, providing support to a common 
bauplan being already present in the last common ancestor 
of chordates. Many major AP and DV subdivisions have direct 
counterparts between amphioxus and vertebrates, even though 
they are often further subdivided in vertebrates. An example of 
this is the DiMes homologous region, which does not seem to 
be molecularly regionalized in the developing amphioxus neural 
tube, but is subdivided into thalamus, pretectum and midbrain 
in vertebrates. These comparative analyses also help to reveal 
cryptic ontogenetic correspondences and homologies between 
cephalochordate and vertebrate CNS terminal derivatives, thus 
shedding light into the origin and evolution of the complex verte-
brate CNS and the specialized features of the amphioxus CNS. 
One surprising conclusion of these analyses is that the originally 
simple and uniform DiMes of amphioxus seems to give rise to a 
relatively large number of functional adult and larval structures (Fig. 
3C), indicating a hidden and unexplored complexity-generation 
potential for this region during late amphioxus CNS development.
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