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ABSTRACT  The characteristics of a cellular calcium signal (calcium signature) are determined, at 
least partly, by the expression of a subset of genes encoding proteins involved in calcium entry, 
calcium uptake and calcium modulation. Our aim in the present work was to characterize the set of 
genes involved in calcium signal generation that are differentially expressed in normal brain tissues 
versus brain tumor and/or glioma stem cells. Public datasets were analyzed according to a four 
step methodology consisting of: 1. detecting the outliers by using principal component analysis 
of the whole transcriptome; 2. building a calcium toolbox composed of 260 genes involved in the 
generation and modulation of the calcium signal; 3. analyzing the calcium toolbox transcriptome 
of different human brain areas and 4. detecting genes from the calcium toolbox preferentially 
expressed in tumor tissues or tumor cells compared to normal brain tissues. Our approach was 
validated on normal brain tissue. Tumor sample analysis allowed us to disclose a set of eighteen 
genes characteristic of glioblastoma tissues or glioma stem cells. Interpreting the set of genes 
highlighted in the study led us to propose that i) the mechanism of store operated calcium entry is 
strongly perturbed in cancer cells and tissues, ii) the process of calcium reuptake into mitochondria 
is more important in cancer cells and tissues than in their normal counterparts and iii) these two 
mechanisms may be coupled in at least one subgroup of the glioblastoma stem cells. 
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Introduction

Glioblastoma is rare, but one of the most deadly adult tumors. 
Similarly to other solid tumors, it can be considered as organ-like, 
being composed of differentiated cancer cells that exhibit low 
tumor genesis capacity and cancer stem cells that are able to 
resume the tumor after treatment of the patient tumor by surgery, 
chemotherapy and radiotherapy (Levy et al., 2014). Normal cells 
from the host also infiltrate the tumor which therefore appears as 
a heterogeneous cellular mass behaving as a microsociety. In 
addition, the tumor cells appear to exhibit an exquisite plasticity 
with differentiated cells able to recover stemness properties, a 
characteristic that is reported as a hallmark of their tumorigenicity 
(Chaffer and Weinberg, 2015).

Calcium is considered as the main second messenger in 
eukaryotic cells. Previous and recent papers have established a 
generally accepted vocabulary to describe the different elements 
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involved in setting up a specific calcium signal in a given cell and 
in a given physiological state (for review see (Haiech et al., 2011)). 
The human genome contains more than 250 genes coding for such 
elements. This ensemble of genes constitutes the calcium toolbox. 
In a given cell, a subset of the calcium toolbox will be expressed 
(forming the cell calcium signalosome). Given signalosome proteins 
assemble to form macromolecular complexes, called calcisomes. 
Such calcisomes are going to be key elements to encode external 
information into a calcium signal and then to decipher this calcium 
signal in order to transduce the external information into cellular 
events (Haiech et al., 2011).

In cancer cells, such cellular events may represent any of the 
hallmarks described by Weinberg (Hanahan and Weinberg, 2011) 
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for solid tumors, namely metabolism regulation, cell cycling, differ-
entiation, apoptosis and more generally cell death, genome integrity, 
host immunological system evasion, cell mobility, angiogenesis …

Taking this rationale, the aim of the paper was to compare the 
calcium signalosomes in glioblastoma tissue and cancer stem 
cells isolated from glioblastoma to normal brain tissues. To take 
into account biological variability (the tumor and cell heterogene-
ity), human variability (annotations errors) and technical variability 
(differences in experimental protocols), we developed a workflow 
for this meta-analysis by appreciating the biological coherency of 
the results obtained.

The analysis was divided into four steps:
1. To remove the putative outliers from our set of data, the overall 

homogeneity of the different datasets was tested using a principal 
component analysis (Shlens, 2014) on the complete transcriptomic 
data associated with each sample,

2. A human calcium toolbox focused on the genes encoding 
proteins involved in calcium signal generation and modulation (cal-
cium entry, calcium outflow and calcium binding proteins involved 
in the modulation of calcium fluxes) was built. We checked that 
the selected set of genes was able to discriminate the different 
groups of samples, indicating that the calcium signalosome is a 
specific signature for a given tissue or a specific cell.

3. Using public data showing gene expression profiles of different 
human brain areas, we optimized a workflow to extract a transcrip-
tomic signature characteristic of the brain tissue and signatures 
specific to the different brain areas. The signatures obtained were 
coherent with the current knowledge of brain biology.

4. A clustering method was then used to define homogenous 
groups of glioblastoma, non-glioblastoma brain cancers, glioma 
cancer cell lines, glioblastoma and normal human embryonic stem 
cells. Those groups were added to the set of brain tissues and 
the previous analysis (step 3) was redone. By that way, common 
calcium signalosome signatures (genes expressed in all samples) 

and some specific signatures (genes mostly present in a small 
subset of samples) could be highlighted.

The results of this meta-analysis are discussed in the paper. 
They constitute a starting point to understand the differences be-
tween calcium signals in various tissues or cells. Moreover, this 
analysis is also a starting point to decipher the calcium signaling 
pathways prevailing in normal and tumor cells. 

Results and Discussion

Outliers and description of different groups
To perform our meta-analysis, several datasets from the GEO 

database (see Table 1) were selected. 
To begin, we decided to use the following groups:

•	 Normal brain tissue
•	 Brain cancer: all brain cancers except the glioblastoma 

tumors 
•	 Glioblastoma tumors (GBM)
•	 Glioblastoma cell lines, meaning the cell lines derived from 

GBM tumors
•	 Glioblastoma cancer stem cells (gCSC), meaning cancer 

stem cells isolated from GBM tumor biopsies
•	 Primary human astrocytes from ATTC (HA)
•	 Embryonic stem cell lines (ESC).

Principal Component Analysis (PCA) aims at transforming a 
number of possibly correlated variables into a smaller number of 
variables called principal components. In our case, the variables 
are either all the genes of the human genome (more than 20000 
genes) or the genes of the calcium toolbox (260 genes, Supple-
mentary materials table 1). One sample is therefore a point in a 
space of dimension 20 000 in one case or 260 in the other case. 
The aim of a Principal Component Analysis is to find a plane in 
this space where the representation of the samples conserves the 
overall shape seen in the Multidimensional space. Therefore, an 
examination of the reduced dimension dataset allows the user to 
spot data outliers, far more easily than would have been possible 
without performing the principal component analysis. 

Datasets Publication Samples used in our analysis 

GSE7181 (Beier et al., 2007) 6 glioblastoma stem cells 

GSE23806 (Schulte et al., 2011) 36 glioma cell lines, 27 glioblastoma stem cells, 12 
GBM 

GSE18015 (Garcia et al., 2010) Cells isolated  from gliomas, 8 with CD133+ and 8 
with CD133- 

GSE7307  677 samples from normal and diseased human 
tissues. Only normal neural tissues were used (229 
samples) 

GSE4290 (Sun et al., 2006) 157 tumor samples, including 26 astrocytomas, 50 
oligodendrogliomas and 81 GBM.Samples from 
epilepsy patients were not used 

GSE21514 (Moser and Fritzler, 2010) 2 human astrocytes samples  

GSE17312 (Bernstein et al., 2010) 4 embryonic stem cell samples 

GSE20126 (Fong et al., 2011) 4 embryonic stem cell lines 

GSE34200 (Mallon et al., 2013) 12 embryonic stem cell lines 

GSE39762 (Aldaz et al., 2013) 3 embryonic stem cell lines 

GSE44841 (Aldaz et al., 2013) 8 glioblastoma stem cells 

GSE46016 (Rheinbay et al., 2013) 10 glioblastoma stem cells 

GSE46531 (Ye et al., 2013) 12 glioblastoma stem cells 

GSE51822 (Zorniak et al., 2015) 2 glioblastoma stem cells 

TABLE 1

PUBLIC DATASETS USED IN THE PRESENT ANALYSIS

Fig. 1. Principal Component Analysis (PCA) of glioblastoma cancer 
stem cells (gCSC) from the different datasets presented in Table 1.



Glioblastoma and calcium signaling    409 

The principal component analysis will look for a new set of 
orthogonal axes. This new set of axes is ranked based on the 
percentage of sample variance held by each axis. The first axis 
is the first principal component and so on. In general, the plane 
used to project the samples is composed of the first and second 
principal component. However, if the first component held more than 
50% of the variance of the sample, it may be interesting to use the 
plane defined by the second and the third principal components.

The coherency of the sample annotations was determined by 
a principal component analysis (PCA) on the transcriptomic data. 
This allowed to visualize the different groups and to detect the 
putative outliers. Outliers were defined as samples of a specific 
group closer to the barycenter of another group. 

Performing this grouping, 18 brain cancer samples among 76 
were found to be closer either to the GBM group (15 samples) 
or to normal brain tissue group (3 samples). Out of the 93 GBM 

samples, 13 were closer to 
the brain cancer group and 3 
to normal brain tissue group. 
When brain cancer or GBM 
samples were found to be 
closer to normal brain tis-
sues, we may hypothesize 
that the tumor biopsies were 
strongly contaminated with 
normal brain tissue. It was 
not possible to get informa-
tion to confirm or infirm the 
proposed public annotations. 
If true, that would estimate 
the error rate of brain tumor 
annotations to be around 15 
to 20 %. As a consequence, 
outliers were removed from 
our analysis without trying any 
re-annotation.

No outliers were found 

Fig. 2. Principal Component Analysis (PCA) of different brain tissue samples and embryonic stem cells (ESC). 
(A) First and second components and (B) second and third components.

among the cancer cell lines and the ESC groups. Concerning the 
gCSC, 16 were detected as outliers. Among them, 11 belong to 
the same dataset (GSE18015 in Table 1). The entire dataset (16 
samples) was therefore removed. Among the 5 other samples 
found as outliers, 4 were closer to the cancer cell line group and 
one to the GBM group.

Leaving apart the dataset GSE18015 that comprised 16 samples, 
the annotation error rate was around 6% pointing to a strong ho-
mogeneity in the gCSC group. Those cell lines were isolated in 
different laboratories using slightly different protocols. The cell lines 
isolated at the department of Medicine of the University of Sala-
manca (GSE18015) appeared different from all the other cell lines, 
but no technical reason could be found to explain the observation. 

To better visualize the homogeneity of the group, we plotted a 
Principal Component Analysis of gCSC alone (Fig. 1) after outlier 
removal. Samples from the different datasets were mixed together 

Fig. 3. Principal Component Analysis (PCA) of different brain tissue samples and embryonic stem cells (ESC), 
except outliers computed from the calcium toolbox genes. (A) First and second components and (B) second 
and third components.

in the PCA, except those from 
GSE46531 that clustered 
apart from the others. 

In the Principal Component 
Analysis obtained using all the 
samples except the outliers, 
the first component accounted 
for more than 50 % of the 
information, indicating that 
most of the data variance was 
retained in this component. 
Therefore to better visualize 
the different groups, results of 
the PCA were also presented 
with the second and third 
components (Fig. 2A and 2B) 
(Shlens, 2014).

After outlier removal, the 
different sets of samples were 
considered homogenous 
enough. Therefore, the sen-
sibility of the used analytical 

BA

BA
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tools to wrong annotations was not checked.

Comparison of the similarity of brain tissue sample groupings 
obtained using calcium toolbox gene expression and global 
gene expression 

Our working hypothesis considered that the calcium signature 
was characteristic of a given cell or a given tissue. A calcium signa-
ture relies on the calcium signalosome, which is the subset of genes 
expressed from the calcium toolbox (see Supplementary Table 1).

PCA analysis was therefore restricted to the calcium toolbox 
genes and compared to that obtained in Fig. 2B using all the 
genes. As shown in Fig. 3 the grouping looked similar although it 
lost in structure and clarity. Restricting the analysis to the calcium 
toolbox genes is thus accompanied by some loss of information. 
However focusing on a specific signaling pathway will facilitate 
the understanding of the results from a biological point of view.

To move the analysis further, a clustering was performed with 
all the samples, using either all the genes or only the genes from 
the calcium toolbox.

A consensus clustering, based on filtered probe sets was 
performed. Only probe sets with a mean expression value in all 
samples comprised between 6 and 12 were kept (the probe set 
expression ranges between 0 and 14). After probe sets filtering, 
our “all genes” dataset was composed of 26702 probe sets. A con-
sensus clustering analysis was performed considering from 2 to 10 
clusters in order to find the most stable partition. The most stable 
partition was obtained using 5 clusters. A heatmap presenting the 
clustering is shown in Fig. 4A. The samples divided into 3 major 
clusters and two small ones. The 3 major clusters are correlated 
with annotations: one for normal brain tissues, one for GBMs and 
other brain cancers and the last one gathering all the samples 

corresponding to cell lines, i.e. HA, glioma cell lines, gCSC and 
ESC. Concerning the two other clusters, one corresponded to one 
GBM sample and the second to the three “pituitary gland” tissues 
from normal brain tissues.

The same analysis was performed using exclusively the calcium 
toolbox genes. In this case, the number of probe sets amounted 
to 260 and the best classification appeared to be consistent when 
using 6 clusters. Those divided into four main clusters and two 
smaller ones. We kept the cell line cluster and most of the brain 
cancer cluster, obtained with the whole set of probes (Fig. 4a). A 
major difference concerned normal brain tissues. With all genes, 
they are clustered together whereas with the calcium genes, they 
are divided into 4 clusters (Fig. 4B).

Calcium toolbox genes does not group samples in the same way 
the whole set of genes and therefore, give us a different point of 
view that will be easier to interpret as we will link the classification 
with specific expression of genes involved with known function in 
neuronal tissues. 

Is it possible to find a calcium toolbox signature specific to 
a given set of brain tissue samples? 

To start our calcium signature analysis, we focused on normal 
brain tissues. A public dataset containing 229 samples of normal 
brain tissues with 38 different annotations corresponding to differ-
ent areas of the brain and the medulla was used (Supplementary 
materials, table 2, 1st column). As previously indicated, outliers were 
defined as samples of a specific group closer to the barycenter of 
a group with a different annotation.

In these annotations, 7 contained only one sample, namely 
cerebellar hemisphere, cerebellar vermis, fetal brain, globus 
pallidus, pons, prefrontal cortex and thalamus lateral nuclei and 
1 contained two samples, namely frontal cortex. These samples 

Fig. 4. Heatmap of normal brain tissues and embryonic stem cells. Clustering of samples was done using consensus clustering algorithm. (A) 
Using all genes and (B) using the calcium toolbox genes.

BA
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were suppressed, except the first and second ones (cerebellar 
hemisphere and cerebellar vermis) which are close to cerebellum 
and which were re-annotated. On the remaining 222 samples, 55 
were found to be closer to the barycenter of another annotation 
group than to their own. We hypothesized that brain tissues are 
not as far apart from each other and decided to keep the sample 
annotations when the distance to their own annotation barycenter 
was less than 100 and the relative difference between the distances 
to their own barycenter and that to the closest barycenter of another 
annotation less than 12 %. These thresholds were set arbitrarily from 
our data. Indeed out of a total of 229 analyzed samples, 24 with 
a distance to their own barycenter above 100 were located closer 
to another barycenter. Those samples were considered at outliers. 
All of them exhibited a relative difference between the distance of 
their own barycenter and that to the closest barycenter of at least 
12%. We therefore used this threshold of 12 % as a minimum to 
consider a sample as an outlier even when the distance to their 
own annotation barycenter was less than 100.

Concerning the “cerebral cortex” annotation, 6 out of 9 samples 
were defined as outliers. These 9 samples were removed. Thus, a 
total of 35 samples were suppressed. Our final dataset was made 
up with 194 samples, annotated in 29 different groups of tissues 
(see Supplementary Table 2). This pointed to a noise in this data-
set of c.a. 16%. This annotation noise in biological datasets was 
considered to be acceptable.

In order to explore the differential expression of the calcium 
toolbox genes among the different normal brain tissue samples, 
we developed an algorithm which allowed us to find genes over-
expressed in one tissue comparatively to the others (see Materials 
and Methods section). Results are available in Supplementary 
Table 3 (sheets 1 to 3 genes coding channels, pumps and calcium 
binding proteins). 

Four genes involved in calcium entry, namely CACFD1, 

CACNG4, ORAI2 and TPCN1 were expressed in 
all the brain tissues and 3 other genes, CACNA1A 
(also known as Cav2.1), CACNA2D1 and CACNG6 
in more than 80 % of the brain tissues. This indicates 
that few calcium toolbox genes are involved in cal-
cium entry (less than 10 %). CACFD1 codes for a 
membrane protein with calcium channel activity and 
was reported to be involved in neuronal exocytosis/
endocytosis (Yao et al., 2009). TPCN1 appears to 
be one of the major calcium channels found in lyso-
somal and endosomal membranes (Neely Kayala et 
al., 2012). CACNA2D1, present in all brain tissues 
except one is a subunit of the voltage-dependent 
channels, Cav2.1. Cav2.1 has also be reported to 
be involved in exocytosis (Weiss, 2010). CACNG4 
and CACNG6 known as modulators of the AMPA 
receptors (ionotropic transmembrane receptors for 
glutamate that mediate fast synaptic transmission 
in the central nervous system) were expressed in 
all tissues but two for CACNG6. Finally, ORAI2 but 
not ORAI1 nor ORAI3 was expressed in all brain 
tissues, pointing out the importance of a specific 
store operated calcium channel mechanism (Heo 
et al., 2015, Kito et al., 2015) either in microglia or 
in brain endothelial capillary cells.

Another set of calcium toolbox genes expressed 

Fig. 5. Network of normal brain tissues, analyzed according to calcium toolbox genes 
overexpressed in these tissues.

in all brain tissues coded for pumps or exchangers. In this set, one 
gene (Serca2) is involved in the regulation of endoplasmic vesicles 
(Baba-Aissa et al., 1998), two genes (PMCA2 and PMCA4) code 
for pumps localized in plasma membrane (Baba-Aissa et al., 
1998), a set of genes (MICU1, MICU2, SLC25A23) are involved 
in mitochondrial calcium homeostasis (Hoffman et al., 2014) and 
another set correspond to calcium exchangers (SLC24A2 (Li et 
al., 2002) and SLC25A12 (Rueda et al., 2014)). 32% of the genes 
were expressed in at least 25 tissues, pointing out the importance 
of calcium reuptake in the different calcium stores of the different 
normal brain tissues.

Finally, 17 genes coding for calcium binding proteins (CAB39, 
CABP4, CALCOCO1, CALCOCO2, CALR, CHP1, EFCAB14, 
HPCAL1, MYL12B, MYL6, MYL6B, RASEF, RCN2, S100A13, 
S100A16, S100A6, SRI/sorcin) were expressed in all brain tissues 
and 6 genes (CETN2, EFHD1, S100B, S100A1, VSNL1, NCS1) 
were expressed in more than 80 % of the brain tissues. That 
represents 15 % of the genes coding for calcium binding proteins 
that were selected in our study.

The next step was to detect genes specifically overexpressed 
in a tissue or a subset of neural tissues. Signatures specific to 
a given brain area could be obtained (see Supplementary Table 
3, sheets 4 to 6 for genes coding channels, pumps and calcium 
binding proteins). 

For calcium entry, the specificity resided in the expression of 
alpha and beta subunits of voltage dependent calcium channels, 
inositol phosphate dependent receptor, ryanodine receptor and in 
a subset of TRP channels.

For calcium pumps and exchangers, tissue specificity was 
mainly given by the difference in expression of the sodium/calcium 
exchangers. 

Concerning the calcium toolbox genes coding for calcium bind-
ing proteins, signature for a given brain tissue or a small subset 
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of brain tissues was given by a set of 39 overexpressed genes as 
listed in Supplementary Table 3, sheet 6. 

When using genes overexpressed in a subset of brain tissues, 
a graph could be built where tissues are connected when they 
share a given number of genes overexpressed in a tissue when 
compared to at least 14 others tissues. Each edge of the graph 
represents genes overexpressed in common between the two 
nodes (Berthold et al., 2007, Shannon et al., 2003). 

Spinal cord and nerve ganglia clearly gathered in one group 
and 15 brain tissues in another group (Fig. 5). This overall analysis 
allowed to propose a calcium genomic signature and to link this 
signature to functional cellular traits.

Calcium signature for brain tumors and glioblastoma stem cells
The same rationale was used to establish a calcium toolbox 

expression signature for brain tumors. To do so, our heterogeneous 
set of tumor samples was first classified into homogenous classes.

We started from the previous clustering presented in section 2 
using the calcium toolbox genes and tried to refine it. In section 
2, five clusters were defined: 3 with normal brain tissues, one with 
brain cancer and glioblastoma (GBM) samples (named “cancer 
cluster”) and one named “cell line cluster “ with glioblastoma cell 
lines, glioblastoma stem cells (gCSCs), embryonic stem cells (ESC) 
and human astrocytes (HA). The last two clusters were refined as 
previously using a consensus clustering on the calcium toolbox 
genes filtered probe sets.

The “cell line cluster” was divided into 7 sub-clusters with 4 
major ones (Fig. 6A) composed of cell lines and HA for the first 
one, gCSCs for the second and third one, ESC for the last one. 
Each of these 4 sub-clusters contained respectively 38, 40, 12 
and 21 samples

The “cancer cluster” was divided into 15 sub-clusters (Fig. 6B) 

with 4 major clusters and 11 composed of one to four samples. These 
latter clusters were too small and were not used in our analysis. 
Considering the major clusters, one contained all pituitary gland 
samples, the second the majority of brain cancers and a few GBM, 
the third and fourth GBM and a few brain cancers. Since we cannot 
verify sample annotations, we decide to keep only samples with a 
logical coherency between annotation and the overall characteristic 
of the cluster. Hence, 3 sub-clusters were defined for the “cancer 
cluster” samples namely, brain cancer, GBM1, GBM2, containing 
respectively 35, 19 and 41 samples.

Seven new groups were thus added to our previous analysis 
of normal brain tissues using the calcium toolbox genes, namely 
brain cancer, GBM1, GBM2 (corresponding to the 3 sub clusters 
retained from the “cancer cluster”) and gCSC1, gCSC2, cell lines, 
ESC (corresponding to the 4 sub-clusters retained in the “cell line 
cluster”). 

Comparative gene expression between groups was then per-
formed. We looked for genes overexpressed in one group with 
respect to the others, using each group as control. Due to noise 
in microarrays and to increase analysis robustness, we focused 
on genes overexpressed for every group. Genes highly expressed 
in brain tumors or in cancer cells but not in normal brain tissues 
were then selected (see Supplementary Table 3 sheets 7 to 9 for 
genes expressed in brain cancer and normal tissues and sheets 
10 to 12 for genes specific to brain cancer and normal tissues).

This disclosed 6 genes involved in calcium entry (STIM2, ORAI1, 
TRPA1, TRPP2/PKD2, TRPM7 and ITPR3), 2 genes involved in 
calcium reuptake (MCU and SLC8A3) and 10 genes coding for 
calcium binding proteins putatively involved in the modulation 
of calcium fluxes (STC1, S100A11, S100A2, S100A4, S100A8, 
EFCAB7, EFCAB11, CETN3, RCN1 and CALU).

TRPM7 has recently been described as a modulator of glioma 

Fig. 6. Refined clustering of samples according to the expression of the calcium toolbox genes. (A) “Cell lines cluster” and (B) “cancer cluster”.

BA
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stem cell proliferation and metastasis (Liu et al., 2014). We found 
this gene more specifically expressed in the group of normal ESCs 
and in one of the two groups of gCSC. This seems to confirm the 
heterogeneity of the gCSC isolated in different laboratories and 
suggests that TPM7 may be used as a marker to classify different 
populations of those cells.

STIM2, ORAI1 and TRPP2  may probably be involved in the 
store operated calcium entry (SOCE) mechanism although the role 
of TRPP2 remains elusive (Saul et al., 2014). However, our results 
suggest that GBM and gCSC may exhibit a different molecular 
mechanism to control the SOCE mechanism.

As far as calcium reuptake is concerned, the two main genes 
highly expressed in gCSC, ESC and glioblastoma cancer cell 
lines and to a lower level in normal brain tissues are MCU coding 
for the mitochondrial calcium uniporter and SLC8A3 coding for a 
sodium/calcium exchanger present both in the plasma membrane 
and in mitochondria (Scorziello et al., 2013). Taking into account 
the expression of the inositol triphosphate receptor ITPR3 and the 
probable change in the CRAC channel in cancer tissues and cancer 
cells, we hypothesize that calcium reuptake by mitochondria upon 
calcium entry via CRAC channels may play an important role in 
tumor tissues or tumor cells.

The role of the calcium binding proteins overexpressed in the 
tumor tissues and/or the tumor cells will not be discussed. We 
may just notice that the specific set of S100 proteins found to be 
overexpressed in brain tumors and cancer cells, namely S100A2, 
S100A4, S100A8 and S100A11, have been reported as markers of 
tumorigenicity (Rand et al., 2008). Moreover, the plasma concen-
tration of some of those calcium binding proteins may be used as 
serum biomarkers with potential utility in brain cancer classification 
and GBM prognosis (Sreekanthreddy et al., 2010).

Conclusion

The present paper proposes a general workflow composed of 
four steps to extract potential genes coding for proteins involved 
in the generation and modulation of the calcium signal in normal 
and cancer tissues or cells.

In this methodology, the first step aimed at decreasing the 
noise and heterogeneity of the public datasets used. The noise 
level was estimated to range between 10 to 20 %. Outliers were 
identified and removed stringently. The following steps dealt with 
a subset of genes involved in the generation and modulation of 
the intracellular calcium signal triggered by an external stimulus. 
By using a well-defined set of genes, the biological coherency of 
our analytical workflow could be checked more easily and a better 
setting of the different thresholds used for the analysis could be 
obtained. Moreover, although in general these types of analysis 
lead to correlation between a set of genes and a specific phenotype 
defined by a given annotation, by focusing on the calcium toolbox, it 
became possible to propose a biological hypothesis that is testable.

Following this approach and focusing on the calcium toolbox 
involved in calcium fluxes (entry and exit from cytoplasm) we 
propose that:

1. Major modifications appear in the regulation of the SOCE 
mechanism in glioblastoma and glioblastoma stem cells, compared 
to normal brain tissues.

2. In some types of glioblastoma cancer stem cells, mitochondria 
may play an important role in the calcium uptake mechanism. This 

role may be coupled with the modifications of the SOCE molecular 
mechanism.

As we did not have access to transcriptomic data of glioblastoma 
stem cells grown under different conditions, the next step will be to 
investigate if the modifications of the calcium signal management 
are induced by tumorigenicity or if they determine the fate of the cell. 

Materials and Methods

Transcriptomic data
Data from 14 independent public gene expression data sets (all using 

Affymetrix HG-U133 Plus 2.0 arrays) and 2 samples hybridized in our 
laboratory (one Human Astrocyte cell line andU87) were taken for the 
analysis. Public samples used are detailed in Table 1.

Calcium toolbox definition
We considered that the characteristics of the calcium signature generated 

in a given cell upon an external stimulus were mainly due to the expres-
sion of a subset of genes from the calcium toolbox and to the localization 
of the expressed proteins. 

The calcium toolbox is composed of the genes involved in calcium 
entry (all kinds of calcium channels), calcium removal from the cytoplasm 
(calcium pumps and calcium exchangers) and calcium detection (calcium 
binding proteins belonging to the EF-hand family) (Haiech et al., 2004).

For the calcium toolbox analysis, 260 genes including few genes anno-
tated as pseudogenes were selected (see Supplementary Table 1). These 
included 75 calcium channels, 25 calcium pumps or calcium exchangers, 
160 calcium binding proteins belonging to the EF-hand domain family 
(Haiech et al., 2011). Such a toolbox is by far probably not exhaustive but 
it facilitates biological interpretation. Moreover, it would be easy to modify 
the calcium toolbox content and redo the overall analysis.

Data analysis

Data normalization 
All data were normalized with R software using the Robust Multi-array 

Average method from the justRMA function in affy package.

Outliers analysis
Samples were annotated in 7 distinct groups: normal brain tissue, 

brain cancer, glioblastoma (GBM), glioblastoma stem cells (gCSC), hu-
man astrocytes (HA), embryonic stem cells (ESC), glioma cell lines. The 
barycenter for each group and the distance from each sample to each 
barycenter were computed. Samples closer to another barycenter than to 
their own were defined as outliers and were removed.

Selection of normal neural tissue retained for the analysis
Normal neural tissues were annotated in 38 groups for the outlier analysis 

using barycenters and distances from barycenters. We suppressed groups 
containing one sample, but kept the annotation if the sample was almost at 
the same distance from another barycenter as from its own, suppressed the 
samples if the distance was different by more than 20% and re-annotated 
cerebellar hemisphere and cerebellar vermis (alone in their group) into 
cerebellum (closest barycenter).

Method to detect genes overexpressed in tissue or cell sub-populations
The algorithm used aimed at identifying and sorting genes strongly 

expressed in a subpopulation of a given dataset in comparison with a 
control dataset. Input data were the results of mRNA expression microarray 
analysis. For every probe set, the algorithm (ALGO) computed the maxi-
mum of expression in control samples (M) and selected all case samples 
with an expression superior to this maximum plus a threshold. A score 
was computed for the probe set reflecting the proportion of case samples 
selected and the delta of expression between case samples and M.
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Algorithm: 

Let the gene expression values of the  1n CTRL  control samples for a 
gene be given by

    1
1i i 1,2, ,n

x
∈ …

and the gene expression values of the  2n  CASE case samples for a gene 
be given by

    2
2i i 1,2, ,n

x
∈ …

The maximal gene expression value of a gene among the control samples 
was first defined 

 1 1ix max{Xˆ }

 t 0.5
  1 2i 1ˆpop x x  t  

 1p 1n size{pop }

  1 1 1median pop x̂∆  −

 1 1p
1

2

n
Score 2

n
∆

Calcium genes specific to normal brain tissue subgroups
We defined the calcium signalosome as the subset of calcium toolbox 

genes expressed in a given cell or tissue and the calcisome the macro-
molecular protein complex built from the proteins coded by the calcium 
signalosome.

Analysis was performed in order to know if calcium signalosomes allowed 
discriminating tissues from normal brain areas. For this purpose, we used 
the precedent algorithm (ALGO) in a recursive way with the normal brain 
dataset containing 29 different tissue annotations. This algorithm works 
by finding genes overexpressed in subgroups; it was therefore used with 
one annotation as “control” and all the others as “case”. Its output is a list 
of probe sets with a score and a list of samples that overexpressed it. If 
the list of samples is empty, the score is zero. After each run of ALGO, we 
kept the information “probe set overexpressed“ if it is overexpressed for 
all samples in one annotation.

Let the different annotations be given by  1,2,...,29{ }i iannot 
The samples be given by  1..{ }

si i nsamples 

And the final output with the samples overexpressed for one probe set 
vs one condition be given by “output” 

For i in 1:29:
		 RES=ALGO(CASE= { }t t iannot ≠ ,CTRL= 

iannot )
		 For jprobeset in RES:
			  For  kannot  in  { }k k iannot ≠ :
				   If  { }

k jannot annot probesetsamples RES ⊂

						      ( , , )j iprobeset annot annot output∈

Once all probe sets overexpressed for one annotation versus another 
one were obtained, we looked for genes specific for one annotation. 

First we aggregated probe sets for one gene and used the gene an-
notation instead of probe set. 

Then we selected, for each annotation, genes that were overexpressed 
at least against 14 annotations (half of them).

Let the final result with genes specific to one annotation be “specific” 
For i in 1:29
		 For  jgene  in  ( , , )j ioutput gene annot
			  If length( ( , , )j ioutput gene annot ) >14

				     ( , )i jannot gene specific∈
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