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ABSTRACT  Voltage-gated Na+ channels (VGSCs) are heteromeric protein complexes containing 
pore-forming a subunits together with non-pore-forming b subunits. There are nine a subunits, 
Nav1.1-Nav1.9, and four b subunits, b1-b4. The b subunits are multifunctional, modulating channel 
activity, cell surface expression, and are members of the immunoglobulin superfamily of cell adhe-
sion molecules. VGSCs are classically responsible for action potential initiation and conduction in 
electrically excitable cells, including neurons and muscle cells. In addition, through the b1 subunit, 
VGSCs regulate neurite outgrowth and pathfinding in the developing central nervous system. Re-
ciprocal signalling through Nav1.6 and b1 collectively regulates Na+ current, electrical excitability 
and neurite outgrowth in cerebellar granule neurons. Thus, a and b subunits may have diverse 
interacting roles dependent on cell/tissue type. VGSCs are also expressed in non-excitable cells, 
including cells derived from a number of types of cancer. In cancer cells, VGSC a and b subunits 
regulate cellular morphology, migration, invasion and metastasis. VGSC expression associates with 
poor prognosis in several studies. It is hypothesised that VGSCs are up-regulated in metastatic 
tumours, favouring an invasive phenotype. Thus, VGSCs may have utility as prognostic markers, 
and/or as novel therapeutic targets for reducing/preventing metastatic disease burden. VGSCs 
appear to regulate a number of key cellular processes, both during normal postnatal development 
of the CNS and during cancer metastasis, by a combination of conducting (i.e. via Na+ current) and 
non-conducting mechanisms. 
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Introduction

Voltage-gated Na+ channels (VGSCs) are heteromeric mem-
brane protein complexes containing pore-forming a subunits in 
association with non-pore-forming b subunits (Fig. 1) (Catterall, 
2000). The b subunits regulate channel gating and are also cell 
adhesion molecules (CAMs) (Brackenbury and Isom, 2011). The 
classical role of VGSCs is the initiation and conduction of action 
potentials in electrically excitable cells, e.g. neurons (Hille, 1992). 
However, VGSCs are also expressed in a number of “non-excit-
able” cells, including fibroblasts, glia, immune cells, and cancer 
cells, where their role is less well understood (Brackenbury et al., 
2008b). Clearly, in both excitable and non-excitable cells, VGSCs 
regulate a number of key cellular processes, by a combination of 
conducting (i.e. via Na+ current) and non-conducting mechanisms. 
The purpose of this article is to provide an up-to-date review of the 
current evidence suggesting a dual role for VGSCs in regulating 
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cellular migration during central nervous system development and 
cancer progression.

Structure and function of VGSCs

The pore-forming a subunit consists of four homologous domains, 
each with six transmembrane segments. The pore is formed from 
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the membrane dipping loop between the 5th and 6th transmembrane 
segments of each domain (Fig. 1) (Catterall, 2000). There are nine 
a subunits, Nav1.1-Nav1.9, encoded by SCN1A-SCN11A (Catterall, 
2000). The different a subunits have unique, but often overlapping, 
tissue-specific expression patterns (Table 1A) (Goldin et al., 2000). 
There is considerable electrophysiological and pharmacological 
diversity between a subunits, which may, in part explain their tis-
sue specificity (Catterall, 2000). Alternative splicing of a subunits 
provides additional functional, developmental, and tissue-specific 
variability (Diss et al., 2004). Four genes (SCN1B-SCN4B) encode 
five different b subunits, b1, and its splice variant b1B, and b2-4 
(Table 1B) (Brackenbury and Isom, 2011). With the exception of 

b1B, the b subunits are type 1 topology transmembrane proteins, 
with a small intracellular C-terminus, and an extracellular N-terminus 
containing an immunoglobulin loop (Fig. 2) (Gilchrist et al., 2013, 
Isom et al., 1992, Namadurai et al., 2014). b1B is a splice variant 
of b1, which, through the retention of exon 3A, transcribes an 
early stop codon and does not contain the transmembrane region 
of b1 (Kazen-Gillespie et al., 2000, Qin et al., 2003). b1 and b3 
are non-covalently linked to a subunits, whereas b2 and b4 are 
covalently linked (Isom et al., 1992, Isom et al., 1995, Morgan et 
al., 2000, Yu et al., 2003).

Classically, the b subunits modulate the biophysical properties 
of the a subunit. For example, b1 and b2 increase current density, 
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Fig. 1. Topology of VGSCs. VGSCs contain a pore-forming a subunit that has four homologous domains, each containing six transmembrane segments. 
The voltage sensor is in segment 4 (Catterall, 2000). The b subunits contain an extracellular immunoglobulin (Ig) loop, transmembrane domain, and an 
intracellular C-terminal domain, with the exception of b1B, which lacks a transmembrane domain, and is thus a soluble protein (Patino et al., 2011). Red 
P, tyrosine phosphorylation site in b1 C-terminus (Malhotra et al., 2004); y, glycosylation sites. Figure as originally published in Brackenbury WJ and 
Isom LL (2011) Na+ Channel b Subunits: Overachievers of the Ion Channel Family. Front. Pharmacol. 2:53. doi: 10.3389/fphar.2011.00053.

Protein Gene Tissue location Cancer type 

(A) α subunits (Brackenbury, 2012, Goldin et al., 2000) 
Nav1.1  SCN1A  CNS, PNS, heart Ovarian 

Nav1.2  SCN2A CNS, PNS Cervical, mesothelioma, ovarian, prostate 

Nav1.3  SCN3A CNS, PNS Ovarian, prostate, small cell lung cancer 

Nav1.4  SCN4A Skeletal muscle Cervical, ovarian, prostate 

Nav1.5  SCN5A Uninnervated skeletal muscle, heart, brain Breast, colon, lymphoma, neuroblastoma, non-small cell lung cancer, ovarian, small cell lung cancer 

Nav1.6  SCN8A CNS, PNS, heart Breast, cervical, lymphoma, melanoma, mesothelioma, non-small cell lung cancer, prostate, small cell lung cancer 

Nav1.7  SCN9A PNS, neuroendocrine cells, sensory neurons Breast, cervical, lymphoma, mesothelioma, non-small cell lung cancer, ovarian, prostate 

Nav1.8  SCN10A  sensory neurons Prostate 

Nav1.9  SCN11A sensory neurons Lymphoma, small-cell lung cancer 

(B) β subunits (Brackenbury, 2012, Brackenbury and Isom, 2011) 

β1 SCN1B Heart, skeletal muscle, adrenal gland, CNS, glia, PNS Breast, cervical, non-small cell lung cancer, prostate 

β2 SCN2B CNS, PNS, heart, glia Breast, cervical, non-small cell lung cancer, prostate 

β3 SCN3B CNS, adrenal gland, kidney, PNS Non-small cell lung cancer, prostate 

β4 SCN4B Heart, skeletal muscle, CNS, PNS Breast, cervical, non-small cell lung cancer, prostate 

TABLE 1

TISSUE AND CANCER EXPRESSION OF VGSCs
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accelerate inactivation, and hyperpolarize the voltage dependence 
of inactivation in heterologous cells (Isom et al., 1992, Isom et 
al., 1995). In contrast, b3 depolarizes the voltage dependence of 
activation and inactivation of Nav1.3 in HEK-293 cells (Cusdin et 
al., 2010), and increases Na+ current density by enhancing traf-
ficking of Nav1.5 to the plasma membrane (Ishikawa et al., 2013). 
b4 hyperpolarizes the voltage-dependence of activation of Nav1.2 
in tsA-201 cells (Qu et al., 2001, Yu et al., 2003). In addition, the 
intracellular domain of b4 has been proposed to act as an open-
channel blocker in cerebellar Purkinje neurons (Grieco et al., 2005). 
However, there have been inconsistent reports on the type and 
magnitude of alteration of the Na+ current by individual b subunits, 
which may be dependent on the cell line/type used (Meadows and 
Isom, 2005, Moran et al., 2003). This variability may be due to dif-
ferences in the endogenous levels of a subunits and b subunits 
and different glycosylation states. For example, b1 and b3 have 
recently been shown to alter glycosylation of Nav1.7 in HEK293 cells 
(Laedermann et al., 2013). Interestingly, the b subunits may also 
regulate other classes of ion channels. For example, b1 regulates 
A-type K+ currents in isolated cortical neurons (Marionneau et al., 
2012), and modifies KV4.3 gating in cardiomyocytes (Deschenes 
et al., 2008, Deschenes and Tomaselli, 2002). b1 has also been 
shown to modulate the biophysical properties of KV1.1, KV1.2, 
KV1.3, KV1.6, and KV7.2 (Nguyen et al., 2012).

In addition to regulating Na+/K+ current, the presence of the 
immunoglobulin loop means that the b subunits are also CAMs. 
b1 can interact both homophilically and heterophilically with a 
number of extracellular proteins and other CAMs, including b2, 
contactin, neurofascin-186, NrCAM, N-cadherin, and tenascin-R 
(Fig. 2) (Kazarinova-Noyes et al., 2001, Malhotra et al., 2000, 
McEwen and Isom, 2004, Ratcliffe et al., 2001, Xiao et al., 1999). 

b2 also interacts with tenascin-C and tenascin-R (Srinivasan et 
al., 1998). In Chinese hamster lung cells, phosphorylation of the 
intracellular Y181 residue on b1 abolishes recruitment of ankyrinG 
and ankyrinB (Malhotra et al., 2002). Further, phosphorylation of 
Y181 regulates subcellular localization of b1 to the intercalated 
disks in cardiomyocytes (Malhotra et al., 2004). b3 shows significant 
homology to b1. However, when expressed in Drosophila S2 cells, 
b3 does not participate in trans-homophilic adhesion, nor does it 
interact with b1 or contactin in Chinese hamster lung cells, but does 
interact with neurofascin-186 (McEwen et al., 2009, McEwen and 
Isom, 2004). In contrast, a recent study has shown that in HEK-293 
cells, the immunoglobulin domain of b3 can indeed participate in 
trans-homophilic binding, and can interact heterophilically with b1 
(Yereddi et al., 2013). Clearly, further work is required to resolve 
these conflicting observations, and b3-mediated adhesive interac-
tions may be dependent on species/cell type.

VGSCs in Central Nervous System development

Electrical activity is required for axonal and dendritic develop-
ment and synaptogenesis in the retinogeniculate pathway and 
visual cortex (Casagrande and Condo, 1988, Riccio and Matthews, 
1985). Similarly, deletion of Nav1.1, Nav1.2, or Nav1.6 in mice results 
in central nervous system (CNS) defects and premature lethality 
(Harris and Pollard, 1986, Planells-Cases et al., 2000, Yu et al., 
2006). Thus, a subunit expression and activity appear to be critical 
for normal CNS development. Fine-tuning of electrical activity via 
VGSC a subunit expression is tightly regulated during development. 
For example, Nav1.3 is expressed during foetal development and 
is replaced by Nav1.1, Nav1.2, and Nav1.6 postnatally (Beckh et 
al., 1989, Schaller and Caldwell, 2000). Later in postnatal devel-
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interacts with other cell adhesion 
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with febrile seizures plus (GEFS+) 
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receptor tyrosine phosphatase b 
(RPTPb), and fyn kinase (Bracken-
bury et al., 2008a, Malhotra et al., 2002, Malhotra et al., 2004, Patino et al., 2011, Wong et al., 2005). Figure as originally published in Brackenbury WJ 
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opment, Nav1.6 replaces Nav1.2 at the axon initial segment, and 
nodes of Ranvier following myelination (Boiko et al., 2001, Boiko 
et al., 2003, Kaplan et al., 2001). Interestingly however, a subunits 
may also play a non-conducting role (independent of Na+ current) 
in regulating tissue development. For example, Nav1.5 expression 
is required for normal heart development in zebrafish (Chopra et 
al., 2010). Further developmental regulation of VGSCs is achieved 
by alternative splicing. Alternative splicing in domain I segment 3 
(DI:S3) occurs in a number of the a subunits, and is developmen-
tally regulated for Nav1.2, Nav1.3 and Nav1.5 (Diss et al., 2004). 

b subunit expression is also developmentally regulated. During 
CNS development, the SCN1B splice variant b1B is predominantly 
expressed embryonically (Kazen-Gillespie et al., 2000, Patino et 
al., 2011). In contrast, b1 expression increases from birth, peaking 
at postnatal day 14 in mice (Kazen-Gillespie et al., 2000). Finally, 
the developmentally regulated expression profile of VGSCs is dis-
rupted in CNS diseases. For example, in multiple sclerosis (MS), 
Nav1.2, Nav1.6 and Nav1.8 are up-regulated in CNS neurons in 
response to demyelination (Black et al., 2000, Craner et al., 2004). 

Interestingly, Scn2b deletion is neuroprotective in the experimental 
allergic encephalomyelitis MS model in mice, possibly by reducing 
a subunit up-regulation (O’Malley et al., 2009).

The b subunits also play critical roles in CNS development. 
Scn1b null mice are ataxic and display spontaneous generalized 
seizures (Chen et al., 2004). Mutations in SCN1B result in genetic 
epilepsy with febrile seizures plus (GEFS+; OMIM 604233; reviewed 
in (Patino and Isom, 2010). In cerebellar granule neurons (CGNs), 
b1 promotes neurite outgrowth via trans-homophilic adhesion (Da-
vis et al., 2004). b1-mediated neurite outgrowth also requires fyn 
kinase and contactin (Brackenbury et al., 2008a). In addition, b1 
is required for neuronal pathfinding and fasciculation in the post-
natally developing CNS (Brackenbury et al., 2008a, Brackenbury 
et al., 2013). b1B can also promote neurite outgrowth (Patino et 
al., 2011). b1 is required for normal localization of Nav1.6 to the 
axon initial segment in CGNs and the resultant inward Na+ cur-
rent is required for b1 mediated neurite outgrowth suggesting a 
specific reciprocal relationship between these two subunits (Fig. 
3A) (Brackenbury et al., 2010).

Fig. 3. Functional reciprocity between a and b subunits regulating neurite outgrowth and mi-
gration during CNS development and metastasis. (A) b1 is required for localization of Nav1.6 to 
the axon initial segment and high frequency action potential firing. The electrical activity and resultant 
membrane depolarisation promotes b1-mediated neurite outgrowth towards the growth cone. (B) A 
similar mechanism is proposed for b1-mediated process outgrowth in breast cancer cells. b1 from an 
adjacent fibroblast or cancer cell interacts with b1 on the cancer cell, initiating a signalling cascade 
that requires Na+ current and fyn kinase. Figure panels reproduced with permission (Brackenbury 
et al., 2010, Nelson et al., 2014).

Scn2b null mice appear normal in neuro-
logical tests, although they display increased 
seizure susceptibility, and altered sensitivity 
to pain stimuli (Chen et al., 2002, Lopez-
Santiago et al., 2006). Electrical activity is 
reduced in the optic nerve of Scn2b null 
mice, and Na+ current is reduced in hippo-
campal and dorsal root ganglion neurons, 
compared to wildtype animals (Chen et al., 
2002, Lopez-Santiago et al., 2006). Scn3b 
null mice have altered cardiac function but 
show no abnormalities in the CNS (Hakim 
et al., 2008) It is possible that b1 may com-
pensate for the lack of b3 allowing for an 
apparently normal neurological phenotype. 
Overexpression of b4 in Neuro2a cells in-
creases neurite outgrowth, dendrite forma-
tion, and filopodia-like protrusions (Oyama et 
al., 2006), suggesting that, like b1, b4 may 
regulate migration and pathfinding in vivo.

The b subunits may play a role in down-
stream signalling pathways and gene tran-
scription. The b subunits are substrates for 
proteolytic processing by a, b and g-secre-
tases (Kim et al., 2005, Wong et al., 2005). 
Sequential cleavage of b2 by b-secretase 
(BACE1) and g-secretase release the b2 
intracellular domain, which is proposed 
to translocate to the nucleus and regulate 
expression of Nav1.1 (Kim et al., 2007, Kim 
et al., 2005). Secretase-mediated cleavage 
of b1 regulates neurite outgrowth, suggest-
ing that proteolytic processing of b subunits 
may be an essential step in transducing 
the adhesion signal to promote migration 
(Brackenbury and Isom, 2011).

In summary, VGSC a and b subunit 
expression is temporally regulated during 
CNS development. Regulated expression of 
specific subtypes is critical for maintaining 
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electrical excitability and activity-dependent synaptic connections 
on the one hand, and adhesive interactions, neurite outgrowth, 
fasciculation and migration on the other. Several studies point 
towards a potential causal relationship between altered VGSC 
expression, developmental aberrations, and CNS pathophysiolo-
gies, which requires further investigation.

VGSCs and cancer

a subunits
VGSC a subunits are widely expressed in a range of different 

types of cancer, including breast cancer, cervical cancer, colon 
cancer, glioma, leukaemia, lung cancer, lymphoma, melanoma, 
mesothelioma, neuroblastoma, ovarian cancer, and prostate 
cancer (Table 1A) (Brackenbury, 2012). Although the majority of 
evidence is based on studies using cell lines cultured in vitro, a 
number of reports have now confirmed that a subunit expression 
occurs in tumours in vivo, e.g. (Fraser et al., 2005, Gao et al., 
2010, Hernandez-Plata et al., 2012, House et al., 2010). In several 
cancers where multiple a subunits have been detected, one a sub-
unit has been identified as most highly expressed, e.g. Nav1.5 is 
predominant in breast cancer (Fraser et al., 2005), whereas Nav1.7 
is predominant in prostate cancer (Diss et al., 2004). Interestingly, 
Nav1.5 and Nav1.7 have been shown to be mainly expressed in 
their neonatal DI:S3 splice forms in several cancers (Brackenbury, 
2012). However, this splicing pattern is not conserved across all 
the tumour types studied, e.g., the neonatal DI:S3 splice form is 
absent in colon cancer cells, and the adult variant is expressed 
instead (House et al., 2010). There also appears to be a cancer 

type-specific relationship between a subunit expression and meta-
static propensity. For example, Nav1.5 is more highly expressed in 
strongly metastatic MDA-MB-231 breast cancer cells than weakly 
metastatic MCF-7 cells, and elevated Nav1.5 expression in tumours 
correlates with increased risk of recurrence, metastasis and reduced 
overall survival (Fraser et al., 2005, Yang et al., 2012). A similar 
pattern has been shown for a subunit expression in colon, pros-
tate and ovarian cancers. However, there is an inverse correlation 
between a subunit expression and clinical grade in glioma, and 
no relationship has been found in lung cancer cell lines (reviewed 
in (Brackenbury, 2012).

The mechanisms by which VGSCs are up-regulated in cancer 
cells are not well understood. Several studies suggest that growth 
factors may play a role (Fraser et al., 2014). Epidermal growth factor 
(EGF) and nerve growth factor (NGF) both increase Na+ current 
in prostate cancer cells, the latter via activation of protein kinase 
A (PKA) (Brackenbury and Djamgoz, 2007, Ding et al., 2008). 
Similarly, EGF signalling via the extracellular signal-regulated 
kinase (ERK)1/2 pathway increases expression of Nav1.7 and Na+ 
current (Campbell et al., 2013). In breast cancer cells, oestrogen 
increases Na+ current, suggesting that steroid hormones may also 
regulate VGSC expression/activity (Fraser et al., 2010). Further 
fine-tuning of VGSC expression in cancer cells is achieved through 
positive feedback auto-regulation. In both metastatic breast and 
prostate cancer cells, Na+ current activates PKA, which in turn, 
promotes functional expression of Nav1.5 and Nav1.7, respectively 
(Brackenbury and Djamgoz, 2006, Chioni et al., 2010).

In vitro, the a subunits have been shown to enhance various cel-
lular behaviours associated with metastasis, including endocytosis 

Fig. 4. Nav1.5 and b1 mutations in cancer. (A) Nav1.5: (i) Number of mutations reported in the COSMIC database (http://cancer.sanger.ac.uk/can-
cergenome/projects/cosmic/) for each amino acid position on x-axis. (ii) Location of Domains 1-4 (yellow) (Catterall, 2000). (iii) Putative phosphorylation 
(red) and glycosylation sites (blue). (B) b1: (i) Number of mutations reported in the COSMIC database for each amino acid position. (ii) Location of im-
munoglobulin (Ig) domain (blue), transmembrane (TM) domain (yellow) and cytoplasmic domain (red) (Brackenbury and Isom, 2011). (iii) Phosphorylation 
(red) and glycosylation sites (blue).

BA
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(Mycielska et al., 2003), galvanotaxis (Djamgoz et al., 2001), gene 
expression (Mycielska et al., 2005), invasion (Grimes et al., 1995), 
migration (Fraser et al., 2003), and process outgrowth (Fraser et 
al., 1999) (Table 2). Conflicting reports suggest that a subunits may, 
or may not, also regulate proliferation (Abdul and Hoosein, 2002, 
Fraser et al., 2000, Roger et al., 2003). These discrepancies may 
be due to the differing specificity of the various pharmacological 
approaches used in different studies. Several studies have indi-
cated that specific a subunits contribute to the invasive capacity of 
different cancer cell types. For example, the neonatal DI:S3 splice 
variant of Nav1.5 enhances migration and invasion of metastatic 
breast cancer cells (Brackenbury et al., 2007). In contrast, Nav1.6 
enhances invasion of cervical cancer cells (Hernandez-Plata et al., 
2012), and Nav1.6 and Nav1.7 enhance invasion and endocytosis 
in prostate cancer cells (Nakajima et al., 2009). Nonetheless, 
expression of any subtype may be sufficient to promote invasion. 
For example, overexpression of Nav1.4 increases the invasiveness 
of LNCaP prostate cancer cells (Bennett et al., 2004).

The fact that a subunits appear to be up-regulated in cancer 
cells and promote metastasis-like behaviour suggests that they 
may be useful therapeutic targets. Indeed, the VGSC-inhibiting 
drugs phenytoin and ranolazine have both recently been shown 
to inhibit metastasis in xenograft mouse models of breast cancer 
(Driffort et al., 2014, Nelson et al., 2015). In support of this, several 
other VGSC-targeting antiepileptic drugs, including phenytoin, 
carbamazepine and riluzole, have been shown to inhibit secretory 
activity, cellular migration, proliferation and invasion in cell lines 
from several different cancers (Abdul and Hoosein, 2001, Abdul 
and Hoosein, 2002, Fraser et al., 2003, Yang et al., 2012). Given 
that the membrane potential (Vm) of cancer cells is relatively de-
polarised compared with terminally differentiated cells (Yang and 
Brackenbury, 2013), it is likely that the majority of VGSCs are in 
the inactivated state. Therefore, the persistent Na+ current, which 
is typically a few per cent of the transient current, is likely to be 
predominant and may prove to be an important therapeutic target 
(Yang et al., 2012). 

Several theories have been proposed to explain how Na+ flux 
through VGSCs contributes to invasion and metastasis. In breast 
cancer cells, Nav1.5-mediated Na+ influx has been shown to increase 
H+ efflux through the Na+/H+ exchanger (NHE1), causing intracellular 
alkalinisation and extracellular perimembrane acidification, thus 
enhancing the activity of pH-dependent cathepsin proteases and 

invadopodia formation (Brisson et al., 2013, Gillet et al., 2009). An 
additional possibility is that VGSCs may regulate gene expression 
(Brackenbury and Djamgoz, 2006). In colon cancer cells, Nav1.5 
has been proposed to be a key regulator of a network of invasion-
promoting genes (House et al., 2010). However, the intermediate 
steps between Na+ current and gene transcription remain to be 
elucidated. A third possibility is that VGSCs may regulate the in-
tracellular Ca2+ level. For example, activation of VGSCs present 
on intracellular membranes in macrophages and melanoma cells 
causes Na+ release from cationic stores, followed by Na+ uptake by 
mitochondria, and Ca2+ release, which then increases podosome 
and invadopodia formation, and enhanced invasiveness (Carrith-
ers et al., 2009). Finally, a significant number of somatic mutations 
have been identified in SCN5A in tumours (Fig. 4A), which span all 
functional domains (Fig. 1). Further work is required to establish 
whether and how these mutations may confer a functional advan-
tage on the VGSC to promote invasive behaviour.

b subunits
VGSC b subunits have been detected in prostate, breast, lung, 

and cervical cancers (Table 1B) (Brackenbury, 2012). Subtype-
specific expression varies across cancer types: b3 is present in 
prostate and lung cancer cells, but is absent in breast and cervical 
cancer cells. In contrast, b1 is predominant in breast, prostate, 
and cervical cancer cells (Chioni et al., 2009, Diss et al., 2008, 
Hernandez-Plata et al., 2012). Similar to SCN5A, a number of 
somatic mutations have been identified in SCN1B in tumours (Fig. 
4B), in both the immunoglobulin and cytoplasmic domains (Fig. 2). 
b1 and b2 expression levels correlate with metastatic potential in 
prostate cancer (Diss et al., 2008, Jansson et al., 2012). However, 
this pattern is not reflected in breast cancer (Chioni et al., 2009, 
Nelson et al., 2014). Thus, b subunit expression may vary across 
cancer type and grade, dependent on specific functional speciali-
sations and heterotypic interactions.

In breast cancer cell lines cultured in vitro, b1 enhances cell-
cell and cell-substrate adhesion, and retards migration in wound 
healing and transwell assays (Chioni et al., 2009). In an orthotopic 
mouse model of breast cancer, b1 overexpression increases tumour 
growth and metastasis (Nelson et al., 2014). b1 overexpression 
also increases vascular endothelial growth factor (VEGF) secre-
tion and angiogenesis, and reduces apoptosis. Interestingly, b1 
promotes neurite-like process outgrowth from breast cancer cells 
via trans-homophilic adhesion, thus recapitulating its functional role 
in neurons (Fig. 3A) (Davis et al., 2004, Nelson et al., 2014). As 
in neurons, b1-mediate process outgrowth in breast cancer cells 
requires fyn kinase activity and Na+ current (Fig. 3B) (Brackenbury 
et al., 2010, Brackenbury et al., 2008a). Thus, it appears that b1 
plays parallel roles in regulating neuronal migration during CNS 
development, on the one hand, and cancer cell invasion during 
metastasis, on the other. Therefore, targeting the adhesive func-
tion of b1 may provide a novel approach to anti-cancer therapy 
(Brackenbury and Isom, 2008).

In LNCaP prostate cancer cells, over-expression of b2 induces 
a bipolar morphology and increases overall length with a concur-
rent reduction in volume (Jansson et al., 2012). These changes 
could allow for greater invasion and motility. In agreement with 
this, b2 over-expressing cells have increased migratory capability 
compared to control cells in a wound healing assay (Jansson et 
al., 2012). b2 over-expressing cells plated on various substrates 

Cellular activity Cancer Subunit(s) implicated 

Process outgrowth Breast, prostate Nav1.5, Nav1.7, β1 

Galvanotaxis Breast, prostate Nav1.5, Nav1.7 

Lateral motility (wound 
healing) 

Breast, mesothelioma, prostate Nav1.5, Nav1.7, β1, β2 

Transwell migration Breast, prostate Nav1.5, Nav1.7 

Endocytic membrane 
activity 

Breast, prostate, small cell lung 
cancer 

Nav1.5, Nav1.7 

Vesicular patterning Breast, prostate Nav1.7 

Adhesion Breast, prostate Nav1.5, Nav1.7, β1, β2 

Gene expression Breast, colon, prostate Nav1.5, Nav1.7, β1 

Invasion Breast, cervical, colon, lymphoma, 
melanoma, non-small cell lung 
cancer, prostate 

Nav1.5, Nav1.6, Nav1.7, β1, β2 

TABLE 2

METASTATIC CELL BEHAVIOURS REGULATED 
BY VGSCs (BRACKENBURY, 2012)
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preferentially adhere to vitronectin and Matrigel 
over fibronectin, suggesting that b2 may selectively 
increase adhesion dependent on the surrounding 
tissue/substrate (Jansson et al., 2012). In contrast, 
b2 over-expression reduces tumour take and growth 
following subcutaneous implantation of LNCaP cells 
into nude mice (Jansson et al., 2012). Thus, b2 may 
enhance invasion and metastasis whilst also reducing 
the ability of tumours to form localized masses. In 
support of this notion, b2 over-expression increases 
invasion and growth on laminin, and enhances as-
sociation between prostate cancer cells and nerve 
axons in organotypic cultures (Jansson et al., 2014). 
Therefore, b2 may permit association between pros-
tate cancer cells and neural matrices, enhancing 
perineural invasion, thus enabling glandular egress 
and subsequent metastatic dissemination.

In contrast to b1 and b2, b3 may function as a 
tumour suppressor. SCN3B (encoding b3) contains 
two functional p53 response elements, suggesting 
that it may be directly regulated by the tumour sup-
pressor p53 (Adachi et al., 2004). In addition, Scn3b 

next step is to establish the extent and distribution of expression 
of VGSCs across tumour types, and the precise involvement of 
different a and b subunits, with the goal of harnessing their thera-
peutic potential.

Conclusions

VGSCs function as macromolecular signalling complexes in 
which Na+ current through the a subunit pore is coupled with non-
conducting signalling via the b subunits. For example, in migrating 
neurons, complexes of Nav1.6, b1, fyn and contactin are proposed 
to localise to the growth come, regulating neurite outgrowth and 
migration (Brackenbury et al., 2010, Brackenbury et al., 2008a). 
Similarly, complexes of Nav1.5 and b1 may occur in breast cancer 
cells, regulating morphological changes and metastasis (Nelson et 
al., 2014, Yang et al., 2012). Additional complexity may be provided 
by further interactions with the cytoskeleton, e.g. via ankyrin, and 
secretases (Brackenbury and Isom, 2011, Kim et al., 2005, Malhotra 
et al., 2000). The challenge now is to understand how signalling 
through these complexes gives rise to morphological changes 
and cellular motility, and how variations in the composition of the 
complex might relate to cell/tissue type, functional specialisation 
and subcellular domain. An important observation is that VGSC 

Normal cell

Transformed cell

Invasive cell

1. Transformation 2. Proliferation

3. Detachment and migration4. Invasion and metastasis

Accumulation of genetic 
alterations, including up-
regulation of functional 
VGSC α and β subunits, 
dependent on tumour
type/grade.

Promotion of primary tumour
growth and angiogenesis, 
e.g. by β1 subunits.

Selective up-regulation of α
subunits, e.g. Nav1.5, enhances 
mesenchymal-like invasive 
phenotype and promotes β1-
mediated process outgrowth.

VGSC-expressing cells 
migrate and invade 
through the basement 
membrane into 
vascular/lymphatic system 
and disseminate to form 
metastases.

β subunit, e.g. β1

α subunit, e.g. Nav1.5

Fig. 5. A model for VGSC involvement in cancer pro-
gression. b subunits are expressed in proliferating primary 
tumours, contributing to adhesion (Chioni et al., 2009), and 
in the case of b1, promoting angiogenesis and resistance to 
apoptosis (Nelson et al., 2014). Up-regulation of a subunits, 
e.g. Nav1.5, promotes a mesenchymal-like phenotype (Bris-
son et al., 2013, Nelson et al., 2014), activation of proteases 
(Gillet et al., 2009) and local invasion from the primary tumour 
(Brackenbury et al., 2007, Fraser et al., 2005, Roger et al., 
2003). VGSC-expressing cells subsequently intravasate and 
metastasise to distant sites (Fraser et al., 2005, Jansson et 
al., 2012, Nelson et al., 2014). Figure adapted with permis-
sion (Brackenbury et al., 2008b).

is up-regulated in wildtype mouse embryo fibroblasts (MEFs), but 
not p53 null MEFs following treatment with adriamycin (Adachi et 
al., 2004). Furthermore, b3 suppresses colony formation, and in 
association with various anticancer agents, b3 promotes apoptosis 
in a p53-dependent manner (Adachi et al., 2004).

Less is known about the expression/function of b4 in cancers. 
Interestingly, a strong down-regulation of b4 has been reported in 
primary cultures of cervical cancer cells relative to cells from non-
cancerous cervix (Hernandez-Plata et al., 2012). A similar pattern 
of expression has also been reported in prostate cancer cell lines 
(Diss et al., 2008). However, b4 expression is increased in cervical 
cancer biopsies compared to noncancerous cervix. This difference 
in relative expression levels between biopsies and primary cell 
cultures may be due to the adhesive function differing in vivo as 
opposed to in vitro (Hernandez-Plata et al., 2012). Further work 
is required to investigate this possibility.

In summary, VGSCs are up-regulated in a number of different 
types of cancer. Increasing evidence suggests that a and b subunits 
both play an important role in promoting various aspects of cancer 
progression and metastasis (Fig. 5). The role(s) played by specific 
subtypes appears to be complex, and may be dependent on tumour 
type. A common theme is that a subunits regulate invasion via Na+ 
current, whereas b subunits regulate adhesion interactions. The 
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a and b subunits appear to play multifunctional and parallel roles 
(1) in excitable cells, e.g. CNS neurons, and (2) in metastatic 
cancer cells, regulating Na+ current, migration and invasion in both 
systems. It is therefore essential to better understand the identity, 
function and composition of these complexes during development 
and in pathophysiological situations. An intriguing possibility is that 
VGSCs may be useful prognostic markers, and/or novel therapeutic 
targets for reducing/preventing metastasis.
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