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ABSTRACT  Differently from the other cells of the body, epidermal cells of the skin undergo a specific 
programmed cell death form named cornification. Many events take part to control this process, 
which has been described as a terminal differentiation program. Going from the innermost layer to 
the outermost, epidermal cells stop dividing, change their shape, acquire new cellular structures 
and strengthen their cytoskeleton. This is corroborated by the fact that during this physical transi-
tion they change their gene expression, reprogramming in some way their biochemical activity. The 
activation of critical enzymes, including proteases and transglutaminases is a fundamental cellular 
event. These enzymes are involved in building the supramolecular and cornified structures which 
confer resistance to the epidermis which carries out a vital function as a skin barrier, preserving 
the organism from various insults. Here we review current concepts about cornification and the 
mechanisms by which this process is preserved in species. 
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Introduction

The skin is the biggest organ in the body providing a solid bar-
rier against environment insults, such as physical, chemical and 
biological insults. One of the most studied is damage derived from 
UVB radiation on skin, that leads the induction of apoptosis in tar-
geted cells. Skin is composed by three major layers. The outermost 
is represented by squamous epithelium, the epidermis, which is 
continuously renewed, providing a waterproof barrier and creating 
the skin tone; keratinocytes are the major cell type in the epidermis 
and divide constantly to generate new cells. The programmed cell 
death or terminal differentiation program occurring to keratinocytes 
is referred to as cornification and it is distinguished from canonical 
apoptosis both morphologically than biochemically. Furthermore, 
while apoptosis is often associated with the removal of damaged 
cells in the organism, cornification functions as enhancer in the 
construction of the skin barrier, thus potentiating organism defense. 
Different degrees of the cornification process give rise to different 
cornified structures in skin, such as the nails, the hair shaft, the 
inner root sheath of hair follicle, the papillae of the tongue and so 
on. Another epidermis cell type is represented by melanocytes. 
These are neuroectoderm-derived cells that produce melanin, 
responsible for skin pigmentation. Underneath the epidermis is 
located the middle layer, the dermis, composed by connective 
tissue, with strong collagen and elastic fibres pierced by blood 
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vessels. It also contains touch, pressure and pain sensors and 
is packed with hair follicles and sweat glands. The deeper sub-
cutaneous tissue, the hypodermis, is composed by fat and con-
nective tissue. The skin barrier is mainly composed of epidermis, 
which also functions as “guardian” for microbial infections. In fact, 
differentiating keratinocytes are able to produce many different 
antimicrobial peptides that preserve from bacteria, parasites and 
other affections in a constitutive or inducible manner (Schroder, 
2010). During skin homeostasis a delicate and physiological turn-
over of proliferating and differentiating keratinocytes occurs. This 
guarantees for maintenance of skin barrier, while its deregulation 
is cause for many skin disorders and cancer. 

The epidermis

The epidermis consists of sub-layers or strata characterized 
by different stages of keratinocytes differentiation (Fig.1). These 
strata are also distinguished by morphology and expression mark-
ers. Attached to the basement membrane resides the inner basal 
layer (stratum basale) responsible for proliferation and generation 
from a pool of pluripotent stem cells of new epidermal cells, that 
will differentiate towards the skin surface. The epidermal stem 
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cells reside in the basal layer and in the bulge of the hair follicle, 
a portion of the outer root sheath (Cotsarelis, 2006; Fuchs and 
Segre, 2000). These pluripotent stem cells give rise to transiently 
amplifying cells, which remain located in the basal layer and that 
represent proliferating keratinocytes. By asymmetric divisions, these 
cells generate new cells, which undergo the process of terminal 
differentiation along the successive layers. Notably, this terminal 
differentiation is coupled with changing in gene expression of these 
cells, which is mostly driven by p63 and other transcription factors 
(Koster et al., 2007).

Differentiation of keratinocytes: the cornification process
Just above the basal layer are stratified differentiating layers, in 

which instead of keratins K5 and K14, that characterize proliferating 
keratinocytes, differentiating keratinocytes express K1, K10 and the 
Caspase-14. This occur in the spinous layer (stratum spinosum), in 
which keratinocytes exit from cell cycle starting terminal differentia-
tion. At this stage cells strengthen their cytoskeleton through keratin 
filaments and increase contact to each others via desmosomes 
junctions. In the following granular layer (stratum granulosus), 
the cells become more flat and increase the expression of late 
differentiation markers. The expression of a gene cluster known 
as “epidermal differentiation complex” (EDC) generates proteins 
such as profilaggrin, a Caspase-14 substrate responsible for typical 
keratohyalin granules, which confer the name to the layer. Loss 
or reduction of profilaggrin expression results in impaired cornifi-
cation and reduced skin barrier (Smith et al., 2006). EDC is also 
responsible for involucrin anad loricrin expression (Henry et al., 
2012). Moreover, many lipids are synthesized and included in the 
lamellar bodies: these are then extruded from the apical side of the 
granular layer to form a waterproof envelope in the following last 
layer, the cornified layer (stratum corneum). The lamellar bodies also 
contains enzymes for the conversion of secreted lipids (Feingold, 
2007). At the transition from the granular to cornified layer many 
events occurs. On this stage cells also lack of their nucleus that 
results degraded together with the other cellular organelles, while an 
intracellular increase of Ca2+ activates transglutaminases (TGase) 
to crosslink cellular proteins to produce a cornified envelope (CE) 
close to the cell surface (Candi et al., 2005). Finally, keratins are 
the only kind of proteins present in the cornified cells, providing 
mechanical strength, thank to their structure and aggregation (Pan 

et al., 2013). Dead corneocytes are so completely surrounded by 
lipids that preserve against water loss and tightly connected by 
corneodesmosomes, which are cross-linked to the CE (Simpson 
et al., 2011). Proteolysis of corneodesmosomes leads to release 
of corneocytes from the outer cornified layer, a process called 
desquamation. 

Many skin appendages undergo similar mechanism for differen-
tiation of keratinocytes and cornification. For example hair and nails 
in which a special matrix of keratin-associated proteins (KRTAPs) 
keeps closer keratins characterized by more cross-linking com-
pare to epidermis. This is due to keratinocyte expression in these 
structures of cysteine-rich keratins able to form multiple disulfide 
bridge, conferring additional mechanical resistance (Thibaut et al., 
2009). Activation of transglutaminases for cornification process 
was reported, but the lipidic matrix which characterized the corni-
fied layer is lost, probably due to the absence of lamellar bodies 
extrusion. This, together with the absence of proteolysis and the 
maintenance of desmosomes, leads to unidirectional growth of this 
epidermal structure (Morioka, 2009; Paus and Cotsarelis, 1999; 
Thibaut et al., 2009).

Programmed cell death and cornification

Differently from apoptosis, keratinocytes terminal differentiation 
implicates a simultaneous process which involves a whole layer 
of cells, whose function is to constitute a solid barrier against en-
vironment insults. The correct cell turnover in the outer surface is 
guaranteed by desquamation process. Despite the difference with 
classical apoptosis, the protease activity of caspases is still required. 
Among the apoptotic caspases, caspase 3 is the only one described 
activated in embryonic skin homeostasis: both expression and 
dowregulation in epidermis development was reported (Okuyama 
et al., 2004). A role for cytochrome C release during in vitro terminal 
differentiation of keratinocytes was also described. Noteworthy, it 
is not functional for apoptosis activation via apoptosome forma-
tion but for transcription factors activation and gene expression 
(Allombert-Blaise et al., 2003; Grether-Beck et al., 2003). In fact, 
the expression of some anti-apototic Bcl-2 family members, such 
as Bcl-2 itself, appears to be downregulated during differentiation 
of keratinocytes in the suprabasal layers, while pro-apoptotic Bax 
and Bak increase their expression. Despite this, no impairments in 
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Fig.1 Structure and expression markers of the epider-
mis. During the cornification process, keratinocytes move 
from the basal layer towards the cutaneous surface, under-
going specific morphological modifications and expressing 
markers which allow to distinguish four histological layers. 
The basal layer is a monolayer of proliferating stem cells 
with expression of keratins 5 and 14. In the spinous layer 
the keratinocytes start to produce keratins 1 and 10; they 
become poligonal and tightly connected through desmo-
somes. In the granular layer, keratinocytes become more 
flat, loose their nuclei and appear granular with increased 
expression of late differentiation markers such as filag-
grin, involucrin and loricrin. In the cornified layer, dead 
keratinocytes, called corneocytes, are composed of keratin 
filaments that are aggregated in supramolecular structures.
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epidermis development was observed in these Bcl2-family members 
knock-out mice (Krajewski et al., 1996; Krajewski et al., 1994; Lu 
et al., 1993), with the exception of Bcl-2 in the hair follicle. Also 
b-integrins, which mediate the adhesion of keratinocytes with the 
extracellular matrix and so regulate the detachment of cells and the 
initiation of terminal differentiation, are able to induce an apoptotic 
signal cascade in suspension keratinocytes, when unoccupied 
(Levy et al., 2000). A putative mechanism for preserving vitality 
of soprabasal keratinocytes in vivo. Finally, suppression of stem 
cells transcription factor c-Kit induces apoptosis in melanoblasts 
of mouse embryos (Ito et al., 1999).

Interestingly, the hair follicle undergoes cyclic activity through 
periods of active hair growth (Anagen), involution due to apoptosis 
process (Catagen), hair shedding (Exogen) and a resting phase 
(Telogen). The Bcl-2 knock-out mice show a prolonged growth 
phase, while transgenic mice show acceleration of this phase 
(Muller-Rover et al., 2000; Veis et al., 1993). Also hair graying 
occurs through apoptosis of melanocytes in the involution phase, 
driven by pro-apoptotic Bim (Bouillet et al., 2001). Keratin-17 knock-
out mice display strong apoptosis in the hair matrix, coupled with 
activation of pro-apoptotic Bmf and Bim. These, thanks to their 
localization at the cytoskeleton level, sense damage in structural 
integrity and induce the apoptotic program (Puthalakath et al., 
1999; Puthalakath et al., 2001).

Metabolic activity in cornification process
As mentioned above, the non apoptotic Caspase 14 is essential 

for normal skin development. It is expressed and activated in dif-
ferentiating soprabasal layers. Knock-out mice for this protease 
show impairments in the formation of cornified layer with consequent 
sensitivity to UVB radiation and inability to maintain skin hydra-
tion (Denecker et al., 2007; Lippens S, 2000; Lippens S, 2003). 
Profilaggrin is a direct caspase 14 substrate, and its degradation 
concurs in the formation of keratohyalin granules and in the orga-
nization of keratin filaments to robust keratinocytes cytoskeleton. 
Furthermore, in the upper cornified layers deficient mice show 
a reduction in filaggrin degradation and the absence of derived 
natural moisturizing factors and urocanic acid, which prevents 
UVB radiation-induced damage (Hoste E, 2011). Another important 
biochemical aspect of cornification, which leads keratinocytes to 
become death corneocytes, is the activation of transglutamin-
ases. This is probably due to signaling of damaged lysosomes, 
with consequent cathepsins release and damaged mitochondria, 
that induce an increase of intracellular Ca+2 levels (Candi et al., 
2005). Transglutaminase induction is functional in the building of 
the supramolecular structures constituted by crosslinked keratin 
filaments and the CE. Suppression of transglutaminase activity, 
TGase1 in particular, is associated with disturbances in the corni-
fication process with no formation of CE and nuclei retention at the 
cornified layer level (Kuramoto et al., 2002; Matsuki et al., 1998).

The degradation of nucleic acids during cornification process is 
a metabolic event very conserved in species (Maddin et al., 2009). 
Especially the DNase1L2 appears to be activated and responsible 
for the DNA digestion process during terminal differentiation of 
keratinocytes (Fischer et al., 2007). Evidences for a putative role 
of DNase2 were also reported (Fischer H, 2011). Its expression is 
almost tissue-specific for skin, witnessing almost a fundamental 
role in this process. DNase1L2 is essential for the removal of 
nuclear DNA during cornification of keratinocytes in vitro, while 

some evidences show that it is probably able to digest also mito-
chondrial DNA (Bouillet et al., 2001). Despite this, the suppression 
of DNase1L2 activity in Knock-out mice does not show significant 
relevance in DNA degradation process during the formation of the 
murine interfollicular cornified layer. However, in the mouse model 
the DNase ablation leads to impairments in the terminal differentia-
tion of keratinocytes of hard cornified structure, such as hair, nail 
and tongue papillae (Bouillet et al., 2001). These differences are 
probably due to specific variants of cornification process between 
human and mouse. Interestingly, the cornified layer is also depleted 
of great amount of RNA, thank to the increased expression and 
activity of some specific RNases (Abtin et al., 2009).

Anti-apoptotic activity in developmental epidermis

Many lines of evidence indicate that NF-kB is a fundamental 
factor in preventing keratinocytes apoptosis during terminal dif-
ferentiation, both in normal and in pathological conditions of the 
skin. In its active DNA-binding form, NF-kB is a heterogeneous 
collection of dimers, composed by different combinations of mem-
bers of the NF-kB/Rel family (Karin and Ben-Neriah, 2000). NF-kB 
transcription factors play an important role in integrating multiple 
stress stimuli and regulating cellular responses in inflammation, 
infection and so on (Bonizzi G, 2004). NF-kB dimers can made 
up of five homologous subunits: p50/NF-kB1, p52/NFk-B2, RelA/
p65, c-Rel and RelB, which reside in the cytoplasmic compartment 
of unstimulated cells by specific proteins, the IkBs, inhibitors of 
NF-kB transcription factor. A partial redundancy in the NF-kB sub-
units functions was reported (Rebholz B, 2007). The IkB kinases, 
representing by IKKa, IKKb and NEMO (IKKg), phosphorylates 
the inhibitors IkB proteins, targeting them for ubiquitination and 
consequent degradation. Thus, the NF-kB factor is released and 
migrates into the nucleus when activates its pro-survival and anti-
apoptotic target genes. The kinase IKKa shows a further activity 
in differentiating keratinocytes of stratified epithelia. As a dimer, 
it moves in to the nucleus and represses proliferative genes, as 
part of TGFb pathway, a major tumor suppressor pathway during 
early carcinogenesis (Marinari B, 2008).

NF-kB is not activated in the proliferating keratinocytes, but its 
induction and nuclear translocation is triggered by differentiation 
(Seitz et al., 1998). Anti-apoptotic NF-kB target genes, such as c-
IAP-1, c-IAP-2, TRAF1 and TRAF2 appears to be up-regulated in 
differentiating keratinocytes (Qin et al., 1999). Combined deletions 
of different NF-kB subunits in mice lead to common reductions 
in the proliferative potential of the basal cells (Gugasyan et al., 
2004; Zhang et al., 2004). Nonetheless, the main role for NF-kB 
transcription factor is to provide protection against apoptosis during 
inflammation. A wide range of stimuli, including tumor necrosis factor 
alpha (TNFa), lipopolysaccharide (LPS) and interleukin-1 stimula-
tion induce the activation of the IKK complex to phosphorylates 
the NF-kB inhibitors, leading to induction of NF-kB nuclear activity 
(Hacker and Karin, 2006). Furthermore Knock-out mice for crucial 
members of NF-kB pathway show premature keratinocytes apop-
tosis and pronounced inflammatory response (Makris et al., 2000). 

Another important pathway implicated in protection of keratino-
cytes from apoptosis is the PI3K/AKT pathway, activated from the 
epidermal growth factor receptor (EGFR) and the insulin growth 
factor-1 receptor (IGF1R). Deleted mice for AKT expression show 
a thinner skin and less hair follicles, compared to normal (Peng et 
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al., 2003; Yang et al., 2005). It was shown that AKT phopshorylates 
the pro-apoptotic BAD, a Bcl-2 family member, thus inhibiting it 
(Datta et al., 1997). Furthermore, does exist an interplay between 
AKT and NF-kB pathway. It is believed that each of the two is able 
to activate the other (Meng F, 2002; Ozes et al., 1999). Many lines 
of evidence indicate that also the ERK1/2 pathway is involved 
in anti-apoptotic mechanisms in keratinocytes (Jin et al., 2005; 
Rygiel et al., 2008). 

PCD and skin pathology 

One of the major environment insult which occurs to skin is 
that derived by exposure to the ultraviolet radiation (UVR). The 
ultraviolet spectrum is composed by three kind of radiations: UVC, 
which are filtered by the atmosphere, being therefore not harmful 
to the skin and UVA and UVB, certainly more “insidious” (Fig.2). 
Both are responsible for sunburn, tanning, photoaging and induc-
tion of carcinogenesis in skin. At the cellular level, UVA and UVB 
radiations, particularly the UVA, are cause of increased levels and 
accumulation of reactive oxygen species (ROS) and contribute 
to apoptosis in keratinocytes (Ichihashi et al., 2003). Moreover, 
UVB radiation is able to induce mutations at nucleotides level 
due to the formation of photolesions and nucleotide conversion 
(Matsunaga et al., 1991). The main repair system acting in UVB-
damaged cells is nucleotide excision repair (NER); but when this 
repair is not sufficient, cells accumulate mutations which are so 
propagated in daughter cells, laying the foundation for transfor-
mation and carcinogenesis. Noteworthy, keratinocytes are able to 
counteract photadamaging through the induction of various cellular 
pathways, including cell cycle arrest and DNA repair, inflammation 
and apoptosis. Macroscopically, apoptosis leads to the formation 
of sun-burn cell (SBC), which represent apoptotic keratinocytes 
with pyknotic nuclei and eosinophilic cytoplasm (Civatte bodies) 
(Daniels et al., 1961).

Apoptosis, as well as SBC formation are mainly attributable 
to the activation of the tumor suppression p53 protein (Bruins W, 
2004), which is well known as “guardian of genome” (Lane, 1992). 
P53 plays a critical role in the activation of UVB radiation apoptotic 
response in keratinocytes, through transcription-dependent and 
independent mechanism and inducing both extrinsic than intrinsic 
apoptotic pathways (Caelles et al., 1994; Wagner et al., 1994). 
UVB-induced damage leads to inactivation of MDM2, a major 
mediator for p53 ubiquitination and degradation. Consequently, 
p53 results stabilized. This stabilization goes through ATM and 
FRAP kinases activation that is responsible for signaling damage 
on p53 by phosphorylating it at ser389 residue (Shiloh, 2003). P53 
performs its apoptotic function mainly through the modulation of 
many Bcl-2 family members, including Bcl-2, Bcl-xL, Bax, PUMA 
and Noxa (Erster and Moll, 2005; Naik et al., 2007; Thornborrow 
et al., 2002; Zilfou et al., 2005). Among them, Noxa seems to be 
a key target for p53 in apoptosis of damaged keratinocytes: Noxa 
Knock-out mice display suppression of apoptosis in UVB exposed 
keratinocytes. 

It was reported that another p53 family member is especially 
involved in modulating UVB-induced apoptosis: p63, which shares 
many target genes with p53. Knock-out mice for this gene display 
the most dramatic skin phenotype with no epidermis, squamous 
epithelia and epithelial appendages (Yang A, 1999). Six different 
p63 isoforms do exist, containing or lacking a canonical transactiva-
tion domain (TA and ΔN isoforms). The most expressed isoform in 
proliferating keratinocytes is ΔNp63a, mainly at the basal layer level. 
In proliferating keratinocytes ΔNp63a occupies p53 responsive 
elements on pro-apoptotic target genes, thus inhibiting p53 binding 
to- and transactivation of these genes (Fig.2). Our previous results 
indicated that when keratinocytes are exposed to UVB radiation 
p38MAPK phosphorylates ΔNp63a, thus inducing its detachment 
from apoptotic p53 target genes and allowing the rapid activation 
of p53-dependent transcriptional apoptotic program (Papoutsaki et 
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al., 2005). Interestingly, the ΔNp63a knock-out mouse is a model 
for ectodermal dysplasia and clefting (AEC) (Koster et al., 2009), 
a skin disorder characterized by fragility and missing patches of 
skin (erosions). These lesions are characterized by suprabasal 
epidermal proliferation, delayed terminal differentiation, and base-
ment membrane abnormalities. This implies that ΔNp63a play a 
critical role in the correct development of skin through modulating 
apoptosis in a spatio-temporal manner.

Conclusion

The epidermis represents an interesting model to study the 
relevance of programmed cell death in normal development and 
pathology. In fact, different apoptotic pathways coexist in the 
epidermis to regulate its homeostasis and response to stressors. 
Programmed cell death of keratinocytes in the granular layer 
occurs continuously and assures the correct development of the 
stratum corneum, while programmed cell death of lower layers’ 
keratinocytes occurs in response to DNA damage and prevents 
cell transformation. These processes are tightly regulated by a 
different set of transcription factors and key enzymes that are ac-
tivated at different stages of the differentiation process. The deep 
knowledge of these processes and the ability to modulate them 
pharmacologically can be easily translated to other systems thus 
explaining disease development in other organs and helping in 
identifying relevant therapeutical targets.
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