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ABSTRACT  Interactions between epithelium and mesenchyme are common features of early stages 
of morphogenesis in different organs. In this historical review article, we retrospectively analyze the 
most important contribution to the definition and characterization of these interactions in three 
different organogenetic systems, including kidney, lung and limb bud. Tubule formation in the kidney 
is an example of an organogenetic event which involves interaction between the ureteric epithelium 
and the underlying mesenchyme that, in turn, induces the branching of the ureteric epithelium. In 
contrast, in lung organogenesis, interactive signaling occurs between the endodermal epithelium 
and the mesenchyme, leading to an alveolar structure. Finally, limb bud development results from 
a series of epithelial-mesenchymal interactions between the mesenchymal cells of the lateral plate 
mesoderm and the overlying ectodermal cells. 
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Introduction

All organs develop and consist of an epithelium and a mes-
enchyme that during the early stages of morphogenesis share 
common morphological features (Grobstein, 1967). In some of 
these interactions, epithelium is able to induce differentiation of the 
mesenchyme and vice versa, and play an instructive role mediated 
by differential activation of genes in responding epithelial cells. 
Epithelial-mesenchymal interactions were described in detail by 
experimental embryologists as early as in the 1950’s and 1960’s.

Interactions between epithelium and mesenchyme are mediated 
by soluble factors, through direct cell-cell contact, and are under 
the influence of the extracellular matrix (ECM) (Grobstein, 1954), 
which changes its organization (Ekblom et al., 1981) and adhe-
sive properties (Ekblom et al., 1980), and by diffusion of soluble 
factors. Direct cell-cell interactions between mesenchymal and 
responding epithelial cells have been observed during mammary 
gland development (Sakakura, 1991). Moreover, growth factors 
and ECM molecules may interact in the signaling of mesenchymal-
epithelial interactions.

Grobstein (1956) (Fig. 1) and others (Saxen et al., 1976, Slavkin 
and Bringas, 1976), found in the kidney and teeth that induction 
is mediated by soluble paracrine factors also in the presence of a 
Millipore filter between the epithelium and mesenchyme. Proteins, 
such as Nodal and Activin diffuse over a long distance and can 
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induce different sets of genes at different concentrations (Gurdon 
et al., 1994, Gurdon et al., 1995), while others, including Wnt, Vg1, 
and BMP4 proteins, however, act over a short distance (Jones et 
al., 1996, Reilly and Melton, 1996).

Another feature of induction is its regional specificity. For 
example, the chick epidermis secretes proteins that signal the 
underlying dermal cells to form condensations, which, in turn, 
secrete soluble factors able to interact with the epidermis and to 
induce the formation of specific cutaneous structures (Nohno et 
al., 1995, Ting-Berreth and Chuong, 1996).

In this historical review article, we retrospectively analyze the 
most important contribution to the definition and characterization 
of these interactions in three systems, including kidney, lung, and 
limb bud.

Reciprocal interactions of developing kidney tissues

The development of the kidney starts when the ureteric bud, a 
local evagination of the Wolffian nephric duct, grows into metane-
phritic mesenchyme. The epithelium of the ureter forms a network 
of tubules that are embedded in the mesenchyme, part of which 



304    D. Ribatti and M. Santoiemma

differentiates into epithelia which organizes themselves into proximal 
tubes and which join the distal tubules of the arborizing ureter, while 
the remainder provides the cellular matrix in which these tubules are 
embedded (Saxen, 1987). Reciprocal inductive interactions occur 
between the epithelium of the ureter and the adjacent mesenchyme 
(Grobstein, 1955, Saxen, 1970).

Grobstein (1955), (1956) cultured in vitro the ureteric epithelium 
and the adjacent mesenchyme alone or together, and demonstrated 
that the ureteric epithelium did not branch in the absence of the 
mesenchyme, while when they were cultured together, the epithelium 
branched and the nephrons formed regularly. Aufderheide et al., 
(1987) showed that the incipient epithelium induced the expression of 
tenascin in the adjacent mesenchyme, and Montesano et al., (1991) 
(Fig. 2) demonstrated that scatter factor/hepatocyte growth factor 
(HGF) induced the growth and branching of kidney epithelial cells.

More recently it has been demonstrated that the signal from the 
mesenchyme is glial-derived neurotrophic factor (GDNF) while its 
receptor RET is expressed in the ureteric bud (Shakya et al., 2005). 
Mice with either the GDNF or RET gene knocked out form no kidney. 
If a GDNF slow-release bead is placed on a culture of nephrogenic 
mesenchyme from these embryos, then branching of the duct is 
restored in the GDNF knock out, which lacks the factor, but not in 
the RET knockout, which lacks the capacity to respond to it.

Reciprocal interactions of developing lung tissues

The experiments of Rudnick (1933) with grafts of chick lung 
strongly suggested that budding of the bronchial tree does not take 
place when the epithelium is deprived of its investing mesenchyme 
and she concluded that factors necessary for the production of orderly 
branching of the endodermal bud lie within the surrounding mes-

trachea produces no extra branches. 
When the epithelium of the new-forming was covered with the 

tracheal mesenchyme, it did not branch regularly (Wessells, 1970), 
and the epithelial lung buds can be induced to form also gastric 
glands, villi epithelia or hepatic cords, in the presence of the cor-
responding mesenchyme (Deuchar, 1975).

The composition of the extracellular glycosaminoglycans (GAGs) 
varies during different phases of lung development and influence 
branching and differentiation of lung epithelium (Becchetti et al., 
1988, Shannon, 1994).

More recently, it has been demonstrated that the branching 
morphogenesis of the developing lungs involves a lateral inhibition-
type system whereby new tips produce fibroblast growth factor-10 
(FGF-10) and suppress the formation of other tips in their immediate 
neighborhood (Volckaert and De Langhe, 2014).

Reciprocal interactions of developing limb tissues

The limb rudiment is initially specified as a territory in the meso-
derm covered by an ectodermal epithelium. The mesenchyme is 
characterized by the presence of highly proliferating cells, named 
the progress zone, covered by a thick epithelia layer, named the 
apical ectodermal ridge (AER), the major signaling center for the 
developing limb. 

In the 1960s, much experimental work has been directed to 
the study of the ectoderm-mesoderm interrelations in limb mor-
phogenesis in the avian embryo. Two different hypothesis have 
been formulated. In both the main importance is attributed to the 
mesoderm of the site of the primary potencies for limb development. 

One group of Authors (Zwilling, Saunders, Hampé, Tschumi, 
Milaire, Goetinck, and Abbott) considered the thickened portion 

Fig. 1 (Left). Clifford Grobstein (1916-1998). Grobstein published a series of pivotal papers 
that established the phenomenon of epithelial-mesenchymal interaction as a principle of 
development.

Fig. 2 (Right). Roberto Montesano. Montesano at the University Medical Center of Ge-
neva, Switzerland, has extensively investigated the mechanisms underlying the generation 
of branching epithelial tubules (tubulogenesis) in the development of different organs.

enchyme. Loffredo Sampaolo and Sampaolo (1961) 
cultivating chick and rabbit lung on a defined medium, 
discovered that removal of the mesenchyme from the 
right lung interrupts the process of epithelial branch-
ing. The unaltered left lung, adjoining, continues to 
branch normally. Dameron (1961) demonstrated 
that the epithelium of fetal lung, isolated in vitro, is 
incapable of morphogenesis. When the epithelium 
is recombined with pulmonary mesenchyme, devel-
opment resumes. Using short-term cultures of cells 
dissociated from embryonic lung, Grover (1961a) 
found that when the medium is seeded, the cells 
begin to re-aggregate into one mass. Moreover, the 
effectiveness of both dissociation and re-aggregation 
decreased with increasing age (Grover, 1961b).

Mesenchyme, separated from fetal mouse lung 
and placed on plasma clots at some distances from 
the bare tracheobronchial tree, migrate toward the 
epithelium and arrange itself about the epithelium. 
Following re-association, epithelial branching pro-
ceeds and this process is maximally inhibited after 
irradiation of both components (Alescio et al., 1963). 
Alescio and Cassini (1962 a,b) demonstrated that if 
a section of mesenchyme from the tracheal bud is 
removed and replaced by mesenchyme taken from 
a bronchial bud, and if the grafted lungs is cultivated 
in vitro, a supernumerary bud grows out from the 
epithelium beneath the grafting site. Normally, the 
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of the AER as a structure endowed with a mesoderm-dependent 
inductor activity (Saunders, 1948, Saunders and Reuss, 1974, 
Zwilling, 1956a, Zwilling, 1956b). The other group [Amprino (Fig. 
3) and Camosso, Barasa, Belland and co-workers, Koeche] denied 
the inductor role of the AER, and attributed the major formative role 
to the mesoderm instead (Amprino, 1965, Kieny, 1960). 

AER maintains the mesenchyme in a proliferating state (pre-
venting it from form cartilage) that enables the linear growth of the 
limb; maintains the expression of those molecules that generate 
the anterior-posterior axis; interacts with the proteins specifying the 
anterior-posterior and dorsal-ventral axis. AER formation requires 
bone morphogenetic protein (BMP) signaling and can be prevented 
in transgenic mice by expressing a dominant negative BMP receptor 
under the control of an epidermis-specific promoter.

The signal for limb bud formation comes from mesodermal cells, 
which secrete FGF-10, capable of initiating interactions between 
the ectoderm and mesoderm (Xu et al., 1998, Yonei-Tamura et al., 
1999). FGF-10 induces the overlying ectoderm to form the AER. 
Moreover, FGF-10 induces the AER to synthesize and secrete 
FGF-8, which stimulates mitosis in the mesenchymal cells. The 
FGF-10 knockout mouse forms no limb buds.

Epithelial-mesenchymal interactions in experimental re-
combination among tissues from different animal species

In 1952, Harold S. Fleming, published “Homologous and 
Heterologous Intraocular Growth of Transplanted Tooth Germs” 
in which he detailed the transplant of tooth germs from different 
species embryos or fetuses into the anterior chamber of the eyes 
of anesthetized mice, rabbits, and guinea pigs. 

A number of recombinations between vertebrate tissues associ-
ated with epidermal organs, including skin, feather, mammary gland, 
salivary gland, tooth organ, suggest that regional mesenchymal 
specificity is instructive for determination and differentiation of 

epithelial phenotypes. In epidermal organs mesenchyme becomes 
determined and differentiates into a unique phenotype, such as 
during tooth organogenesis and odontoblast differentiation.

Homospecific tissue recombinations allow to demonstrate the 
essential role of mesenchyme in epithelial growth, morphogenesis, 
and cytodifferentiation. Moreover, epithelial components may also 
intervene in the control of morphogenesis and differentiation of 
mesenchymal cells such as odontoblasts, chondroblasts, osteo-
blasts, and muscle cells. 

Further development

It is now well established that epithelial-mesenchymal interactions 
are now considered to constitute the single most important mecha-
nism regulating organ development in vertebrates. The production of 
transgenic mice with deficient gene function has led to the identifica-
tion of molecules that are required for the development of specific 
organs, including FGF, Hedgehog, Wingless, transforming growth 
factor beta (TGF-b), activin, BMPs. BMP-4 causes bone formation, 
cell death, and in other instances specifies the epidermis, while 
BMP-7 is important in neural tube polarity and kidney development 
(Daniel et al., 1989, Ritvos et al., 1995). In spite of the wide variety 
of molecules involved, common molecular mechanisms appear to 
govern the development in different organ systems. 

FGF and TGFb families mimicked the effects of inductive signals 
as it has been confirmed by inhibition experiments by using domi-
nant negative mutations of growth factor receptor (Slack, 1994).

The FGF gene family comprises nearly two dozen structurally 
related members. FGF-8 is especially important during limb de-
velopment and lens induction. FGF-8 is usually made by the optic 
vesicle that contact the outer ectoderm of the head. After contact 
with the outer ectoderm occurs, FGF-8 gene expression becomes 
concentrated in the region of the presumptive neural retina (Vogel-
Hopker et al., 2000).

The proteins of the Hedgehog family induce boundaries between 
cells. Three homologues of Drosophila Hedgehog gene are rec-
ognizable in Vertebrate: sonic Hedgehog (shh), desert Hedgehog 
(dhh), and Indian Hedgehog (ihh) (McMahon and Bradley, 1990, 
Stern et al., 1995).

Concluding remarks

The term epithelial-mesenchymal interaction is one of the most 
common used in developmental biology. In fact, the range of tis-
sues that form as a result of the interaction between mesenchyme 
and the ectodermic and endodermic epithelia is wide. These in-
teractions show almost two common features: they are sequential 
and coordinated and are reciprocal, occurring in both directions 
between the epithelial and mesenchymal tissues. Mesenchyme 
influences epithelial growth, induces specific patterns of ductal 
branching, specifies epithelial morphology and spatial organization, 
and activates specific patterns of epithelial cytodifferentiation and 
functional activity.

During normal development regulated by epithelial-mesenchymal 
interactions take place an invasive epithelial behavior which, differ-
ently from that occurs in cancer cells, is under spatial and temporal 
regulation. The existence of common molecules involved in the 
regulation of cancer and development, suggests “the possibility that 
understanding their function and mode of action during normal devel-

Fig. 3. Rodolfo Amprino (1912-2007). Amprino proposed that the apical 
ectodermal ridge arises simply from the accumulation of ectodermal cells 
at the apex of the limb bud, as a consequence of the distalward sliding of 
the dorsal and ventral ectodermal faces of the bud.
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opment can provide insights into their abnormal ones.” (Arias, 2001).
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