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ABSTRACT  Precise and local control of the innate immune system within the placenta is an essential 
component for achieving a normal and healthy pregnancy. One of the most abundant immune cells 
of the placenta is a subpopulation of natural killer (NK) cells that profusely populates the uterine 
decidua during early pregnancy. Uterine NK (uNK) cells and trophoblast cells of the placenta com-
municate both directly and indirectly to contribute to the critical process of spiral artery remodeling. 
Here, we discuss recent findings that expand our knowledge of uNK cell-trophoblast cell crosstalk 
and the important role it plays in the maternal vascular adaptation to pregnancy. 
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Introduction

Natural killer (NK) cells are lymphocytes belonging to the innate 
immune system that attack virally-infected cells and tumor cells 
via exocytosis of perforin- and granzyme-containing granules. In 
females, there are two populations of NK cells: peripheral blood 
(pb) NK cells and decidual (d) or uterine (u) NK cells. Both NK 
cell populations are capable of cytotoxicity and cytokine secretion. 
However, pbNK cells are primarily lytic cells, while uNK cells are 
primarily cytokine and chemokine producers.

A dramatic expansion of uNK cells occurs during early preg-
nancy, populating two adjacent areas of the implantation site, the 
decidua basalis (DB) and the mesometrial lymphoid aggregate of 
pregnancy (MLAp). Proliferation continues until mid-pregnancy, at 
which point uNK cells comprise up to 70% of immune cells pres-
ent in the decidua, the progesterone-altered endometrium of the 
uterus that supports the conceptus (Bulmer et al., 2010). uNK cell 
population size then declines until the end of pregnancy.

Molecular characterization of uNK cells has led to the identifi-
cation of subpopulations of uNK cells in the decidua. Mouse uNK 
cells, previously identified by periodic acid Schiff (PAS) staining, 
are also currently identified by Dolichos biflorus agglutinin (DBA) 
lectin staining (Paffaro et al., 2003). PAS and DBA lectin staining 
defines two subpopulations of uNK cells: PAS+ DBA- and PAS+ DBA+ 

cells, which exhibit different gene expression profiles (Chen et al., 
2012, Zhang et al., 2011). While PAS is a pan-uNK cell marker, 
DBA lectin detects the subpopulation of cells that expands during 
pregnancy, as 90% of uNK cells at mid-gestation are DBA+ (Zhang 
et al., 2011).
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In contrast to the mouse, human uNK cells are identified by their 
CD56 CD16 signature. The vast majority of uNK cells are CD56bright 

CD16-, and pbNK cells are typically CD56dim CD16+. Interestingly, 
while both subpopulations are present in the decidua, the propor-
tion of these two subsets can shift to favor cytotoxic CD56dim CD16+ 

cells in the presence of infectious agents like cytomegalovirus 
(Siewiera et al., 2013) and Toxoplasma gondii (Xu et al., 2013a), 
both common intrauterine infections that cause severe birth defects.

Despite belonging to the immune system, uNK cells’ primary 
contributions to the developing pregnancy are not immune in 
nature. Rather, uNK cell-secreted cytokines and chemokines 
communicate with fetal trophoblast cells of the placenta (Hanna 
et al., 2006); these two cell types act in concert to remodel spiral 
arteries, conduits of blood from the uterus to the placental bed and 
growing fetus (Smith et al., 2009). The importance of this process is 
stressed by the association of insufficient spiral artery remodeling 
with several diseases of pregnancy, such as fetal growth restriction 
(FGR) and preeclampsia. Here, we briefly review aspects of uNK 
cell-trophoblast cell crosstalk and their role in spiral artery remodel-
ing and the maintenance of pregnancy, as summarized in Fig. 1.

Signals promoting differentiation of uNK cells

Little is known about uNK cell precursors and the source of the 
expanded uNK cell population during pregnancy. However, there 
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is evidence to suggest that the majority of uNK cell precursors 
originate from outside the uterus. In the early 2000s, Croy and 
colleagues were unable to detect differentiated uNK cells in NK 
cell-deficient animals engrafted with parts of wild type uteri, sug-
gesting that uNK cell precursors are extra-uterine (Chantakru et 
al., 2002). More recently, analysis of changes in uNK cell surface 
markers during pregnancy suggest that uNK cells endogenous to 
the uterus decline between gestation day (gd) 0 and gd6, perhaps 
because their cytotoxicity would be lethal to the foreign conceptus 
(Takashima et al., 2013). Therefore, the endogenous uNK cell 
population may be less critical for the maintenance of pregnancy 
than uNK cells that differentiated from extra-uterine precursors.

Macrophage-derived interleukin-15 (IL-15) is a critical regulator 
of NK and uNK cell differentiation. It was first observed that the 
time course of IL-15 expression during pregnancy parallels that of 
uNK cell granule contents (Ye et al., 1996). Soon thereafter, IL-15-

/- animals were generated (Kennedy et al., 2000). IL-15-/- females 
lack uNK cells, MLAps, and spiral artery remodeling despite birthing 
litters of average size but slightly below-average weight (Ashkar et 
al., 2003, Barber and Pollard, 2003). Recent microarray analysis 
comparing IL-15-/- and IL-15+/+ animals did not detect differences in 
expression levels of genes involved in decidualization (Bany et al., 
2012). Therefore, the finding of below-average weight pups born to 
IL-15-/- dams cannot be explained by differences in decidualization 
and is likely due to the effect of IL-15 on uteroplacental circulation 
via stimulation of uNK cell differentiation.

Recent studies offer candidate regulators of IL-15 expression. 
For example, there is evidence that the transcription factor Runx3 
acts together with other transcription factors to promote IL-15 ex-
pression (Levanon et al., 2014). However, there are also potentially 
indirect regulators of IL-15 expression. For example, a conditional 
knockout (cKO) of bone morphogenic protein receptor 2 (BMPR2) 
in the female reproductive system demonstrated decreased IL-15 
expression (Nagashima et al., 2013). As may be expected, BMPR2 
cKOs lacked uNK cells at implantation sites and exhibited defects 
in placentation. 

In another animal model of placental underperfusion, heme 
oxygenase-1 (HO-1) heterozygotes and knockouts also downregu-
lated IL-15 expression and exhibited fewer uNK cells in the DB and 
MLAp (Linzke et al., 2013). Similar to BMRP2 cKOs, Hmox1+/- dams 
demonstrated intrauterine growth restriction (IUGR), suggesting 
poor uteroplacental circulation. Interestingly, treatment with CO, a 
byproduct of HO’s heme metabolism, elevated uNK cell numbers, 
promoted spiral artery remodeling, and decreased the incidence 
of fetal death. However, CO treatment did not elevate IL-15 levels. 
In an attempt to explain why IL-15 is downregulated in Hmox1+/- 
and Hmox1-/- animals, the authors suggest that CO may affect 
the activity of macrophages, a demonstrated source of IL-15 in 
the pregnant uterus (Ye et al., 1996). If true, this hypothesis could 
address the well-established, counterintuitive protection that smok-
ing confers against preeclampsia. Altogether, these observations 
suggest potential indirect mechanisms of uNK cell differentiation 
via regulation of IL-15 expression.

Direct interactions between uNK and trophoblast cells: 
KIRs and HLAs

Differentiated uNK cells express activating and inhibitory cell 
surface receptors. Stimulation of these subtypes by trophoblast-

expressed ligands, for example, determines the degree of uNK cell 
activity. Interestingly, the proportions of activating and inhibitory 
receptors may shift in the presence of a foreign pathogen to modify 
uNK cell activity and promote cytotoxicity (Xu et al., 2013b). Many 
of these uNK cell surface receptors belong to the killer cell Ig-like 
receptor (KIR) family. KIR A and B haplotypes preferentially express 
inhibitory and activating receptors, respectively, and bind to fetal 
trophoblast-expressed human leukocyte antigen C (HLA-C), a 
major histocompatibility complex (MHC) type I molecule.

Importantly, Moffett and colleagues demonstrated associations 
of certain KIR-HLA combinations, specifically KIR AA and HLA-C2, 
with diseases of pregnancy like preeclampsia and miscarriage 
(Hiby et al., 2008, Hiby et al., 2004). Binding of fetal HLA-C2 to 
the inhibitory receptor KIR2DL1 in these women may predispose 
to preeclampsia and other placental disorders via insufficient 
uNK cell activation (Hiby et al., 2004). In contrast, KIR B women 
preferentially express uNK cell activating receptors. In these 
women, HLA-C2 likely binds to the activating receptor KIR2DS1, 
protecting women against these diseases by activating uNK cells 
and stimulating trophoblast invasion (Hiby et al., 2010, Hiby et 
al., 2004). Recent evidence that KIR2DS1 stimulates secretion of 
cytokines like granulocyte macrophage colony-stimulating factor 
(GM-CSF) by uNK cells and trophoblast migration supports this 
paradigm (Xiong et al., 2013). 

While HLA-C has attracted attention for its disease associations, 
trophoblast cells express HLAs other than HLA-C. Specifically, they 
also express HLA-E and HLA-G. HLA-E binds to CD94/NKG2A, 
an inhibitory receptor on uNK cells (King et al., 2000), and HLA-G 
binds to leukocyte immunoglobulin-like receptors (LILRs) on uNK 
cells (Apps et al., 2007). However, HLA-G also binds to a KIR,  
CD158d/KIR2DL4, which is expressed in endosomes, not on the 
uNK cell surface like other KIRs (Rajagopalan, 2010). Binding of 
HLA-G to KIR2DL4 activates downstream pathways that confer 
a senescent phenotype on the uNK cell (Rajagopalan and Long, 
2012). Supernatants from KIR2DL4-stimulated uNK cells enhance 
the permeability and angiogenic capacity of human ubilical vein 
endothelial cells (HUVECs). It is easy, therefore, to imagine a role 
for uNK cells in placental vascular remodeling via HLA-G stimula-
tion of KIR2DL4.

Despite the attention paid to the consequences of HLA-KIR in-
teractions, there is likely a role for non-KIR uNK cell receptors that 
bind to non-HLA ligands. Specifically, the aryl hydrocarbon recep-
tor (AHR) is expressed by DBA- uNK cells and may be important 
for the proliferation of this oft-ignored uNK cell subset (Felker et 
al., 2013). While Ahr-/- implantation sites demonstrated wild type 
levels of total uNK cells, DBA+ cells were smaller, and DBA- cells 
were fewer in number (Felker et al., 2013). Ahr-/- animals also 
demonstrated insufficient spiral artery remodeling. Similarly, loss 
of natural cytotoxicity receptors (NCR), expressed by DBA+ cells, 
didn’t affect total uNK cell numbers but impaired uNK cell matura-
tion and spiral artery remodeling (Felker et al., 2013). While the 
ligands for these receptors are unknown, they are clearly playing 
an important role in uNK cell maturation and activity, highlighting 
the importance of interactions outside the KIR-HLA axis.

Trophoblast-derived factors affect uNK cell recruitment

uNK cell-trophoblast cell crosstalk extends beyond contacts 
between cell surface proteins. For example, trophoblast-derived 
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peptides of the calcitonin (CT)/calcitonin gene-related peptide 
(CGRP) family are involved in maintaining proper placental per-
fusion, possibly by communicating with uNK cells. The clearest 
link between a CGRP family member, uNK cells, and spiral artery 
remodeling is adrenomedullin (AM).

Levels of AM, an anti-inflammatory vasodilator, are physi-
ologically elevated in normal pregnancy (Gibbons et al., 2007) 
but altered in adverse pregnancy outcomes (Lenhart and Caron, 
2012). Polymorphisms in the AM gene are associated with birth 
weight, glycemic regulation, and preeclampsia (Lenhart et al., 
2013). AM localizes to implantation sites and is expressed by 
the uterine epithelium and fetal trophoblast cells (Li et al., 2006). 
Fetal trophoblast cells also express the AM receptor, calcitonin 
receptor-like receptor (CLR) (Tsatsaris et al., 2002). Interestingly, 
AM+/- females are less fertile due to diminished uterine receptivity 
(Li et al., 2008), and pups born to AM+/- females are more likely to 
demonstrate FGR (Li et al., 2006). Altogether, these data suggest 
a role for maternal AM in implantation and placentation.

However, AM-/- embryos are more likely to exhibit FGR than 
AM+/- or AM+/+ embryos, suggesting a role for fetal-derived AM in 
placentation. AM-/- placentas demonstrate fewer uNK cells and 
retention of vascular smooth muscle cells lining spiral arteries com-
pared to AM+/+ placentas (Li et al., 2013). Concordantly, placentas 
from AMhi/hi pregnant females, a gene-targeted animal model of AM 
overexpression, exhibit 30% more uNK cells than AM+/+ placentas 
and upregulate cytokine, chemokine, and matrix metalloproteinase 
(MMP) expression. In vitro, uNK cell-conditioned media supple-
mented with AM promotes apoptosis of vascular smooth muscle 
cells, supporting the emerging role for uNK cells in spiral artery 
remodeling (Li et al., 2013). It remains to be seen whether AM-
mediated uNK cell recruitment and activity is dosage-dependent.

Like AM, adrenomedullin 2 (AM2), also known as intermedin, is 
physiologically elevated during pregnancy (Chauhan et al., 2007). 
Administration of an AM2 antagonist causes FGR, highlighting the 
importance of AM2 in a healthy pregnancy (Chauhan et al., 2006). 

AM2 is expressed by trophoblast cells and stimulates their inva-
sion via the mitogen-activated protein kinase (MAPK) signaling 
pathway (Chauhan et al., 2011, Havemann et al., 2013). AM2 also 
dose-dependently stimulates HLA-G expression in trophoblasts 
cells, possibly stimulating KIR2DL4 signaling on uNK cells that 
could then acquire a senescent phenotype and increase vascular 
permeability and angiogenesis (Chauhan et al., 2011, Rajagopalan 
and Long, 2012). It is appealing to test whether AM2 dosage cor-
relates with uNK cell recruitment to the decidua and consequent 
spiral artery remodeling.

Other CGRP family members also appear to modulate the 
uteroplacental circulation. For example, CGRP affects blood 
pressure regulation at the maternal-fetal interface, and its levels 
are altered in pregnancy-induced hypertension and preeclampsia 
(Dong et al., 2005, Dong et al., 2004, Fei et al., 2012, Gangula et 
al., 2003, Knerr et al., 2002). However, CGRPs’ effects on uNK 
cell recruitment and activity remain to be elucidated.

As may be expected, there are trophoblast-derived factors out-
side the CGRP family that communicate with uNK cells. For example, 
thrombopoietin (TPO) and its receptor c-Mpl  are expressed by 
uNK cells and trophoblast cells and act in concert to stimulate the 
proliferation and migration of these cell types via the JAK/STAT 
pathway (Segerer et al., 2013). As we come to understand more 
about uNK cell-trophoblast cell crosstalk, we imagine that other 
trophoblast-derived factors will come to light as important effectors 
of uNK cell recruitment and activation.

uNK cell-derived factors promote placental vascular 
remodeling

uNK cells generate an array of angiogenic growth factors, cy-
tokines, and chemokines in different proportions at different times 
of pregnancy, suggesting a continuous and evolving role for uNK 
cells as pregnancy progresses. Here, we briefly discuss several 
examples of uNK cell-derived factors, acknowledging that there 
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cells in the decidua influences spiral artery remodeling.
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are many others we do not address.
Angiopoietin (Ang) 1 and 2, transforming growth factor b (TGF-

b), and vascular endothelial growth factor (VEGF) are several 
examples of uNK cell-secreted angiogenic factors (Lash et al., 
2006). Placental growth factor (PlGF) belongs to the VEGF fam-
ily and has emerged as a potential biomarker for preeclampsia, 
emphasizing the significance of these angiogenic factors in proper 
uteroplacental circulation (Chappell et al., 2013, Levine et al., 
2004). VEGF-C also belongs to the VEGF family and may as-
sume an additional role in protecting trophoblast cells from uNK 
cell cytotoxicity (Kalkunte et al., 2009). The concentration of these 
factors decreases in the decidua as pregnancy progresses, sug-
gesting that they may be irrelevant after spiral artery remodeling 
concludes (Lash et al., 2006).

Interferon-gamma (IFN-g) is a uNK cell-secreted cytokine that 
has arguably attracted the most attention in the literature; it is nec-
essary and sufficient for spiral artery remodeling (Ashkar and Croy, 
2001). IFN-g inhibits trophoblast invasion by promoting apoptosis of 
trophoblast cells and altering protease levels, keeping trophoblast 
invasion in check (Lash et al., 2006). Perhaps counterintuitively, 
uNK cells from preeclamptic women secrete less IFN-g than uNK 
cells from normotensive controls (Zhou et al., 2013).

uNK cells also produce a variety of chemokines, including 
interleukin-8 (IL-8) and interferon-inducible protein-10 (IP-10). 
Receptors for these two chemokines, CXCR1 and CXCR3, respec-
tively, are expressed on the trophoblast cell surface, substantiating 
uNK cells’ candidacy as potent regulators of trophoblast invasion 
(Hanna et al., 2006). However, IL-8 and IP-10 presence in uNK 
cell-conditioned media (CM) isn’t different between pregnancies 
with normal and high uterine artery Doppler resistance indices (RIs) 
(Wallace et al., 2013). To generate uNK cell CM, the authors plated 
equal densities of uNK cells from the different pregnancies, which 
could explain this finding. uNK cell chemokine secretion could very 
well be equivalent cell to cell, but the two types of pregnancies 
may have different population sizes of uNK cells. CM from these 
pregnancies did differ in extracellular signal-regulated kinase (ERK) 
and Akt pathway activation, which are critical for trophoblast inva-
sion. Therefore, it is possible that uNK cells of these two types of 
pregnancies differentially express chemokines other than the ones 
examined in this study.

Finally, uNK cells are also sources of MMPs such as MMP-2 
(Naruse et al., 2009). The previously mentioned peptide hormone 
AM stimulates MMP-9 secretion from uNK cells, triggering spiral 
artery smooth muscle cell apoptosis (Li et al., 2013). Altogether, 
this orchestra of signaling molecules coordinates the complex pro-
cess of spiral artery remodeling to maintain a healthy pregnancy. 
Intriguingly, angiogenic growth factors and cytokines decrease in 
concentration when uNK cells and trophoblast cells are co-cultured, 
though the cell type from which these factors are derived in this 
co-culture is uncertain (Lash et al., 2011). No doubt additional 
signals will be identified that will further our understanding of uNK 
cell-trophoblast interactions.

Conclusions

In summary, the overall immune milieu of the placenta is an im-
portant determinant of the health and success of a pregnancy (Arck 
and Hecher, 2013, Erlebacher, 2013). Perturbations in this complex 
environment by lipopolysaccharide (LPS)-induced inflammation, 

for example, can cause abnormal placental vascular remodeling 
and phenotypes resembling FGR and preeclampsia (Cotechini 
et al., 2014). uNK cells dominate this immune landscape during 
early pregnancy and are important modulators of the maternal-
fetal vasculature. Generalized inflammatory changes triggered by 
obesity, for example, can cause under-recruitment of uNK cells to 
the decidua, which could explain why obesity elevates a patient’s 
risk of pregnancy complications (Parker et al., 2013).

Certainly, there are other determinants of uNK cell density in 
the decidua during early pregnancy not discussed here, such as 
decidual cell-derived cytokines (Lockwood et al., 2013). However, it 
is likely that there are important effectors of spiral artery remodeling 
other than uNK cells (Charalambous et al., 2012); several studies 
suggest that uNK cells may be important only during a small time 
frame of this process. Ultimately, furthering our understanding of 
uNK-trophoblast cell interactions and their role in placental vascular 
remodeling will shed light on placentation disorders like FGR and 
preeclampsia and may potentially reveal new treatment modalities 
for these diseases.
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