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ABSTRACT  The ovarian follicle has a three-dimensional (3D) structure in which the oocyte is sur-
rounded by tightly connected follicle cells that mediate the action of external signals and nourish 
the gamete during its maturation. Thus, the maintenance of follicle organization during the whole 
growth process is crucial for the correct acquisition of developmental competence. In recent years, 
much attention has been given to in vitro culture systems capable of maintaining follicle architecture. 
With the aim of providing a quick reference guide, in this review we will summarize the techniques 
developed for the 3D culture of mouse follicles.
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Introduction

In the past few years important improvements have been 
achieved in the in vitro culture of mammalian ovarian follicles. 
Some laboratories have even been able to culture follicles from 
the primordial/primary stage up to their complete maturation, ac-
quisition of fertilizability and developmental competence (Eppig 
and O’Brien 1996). As thoroughly described earlier (Desai et al., 
2010), despite the many upgrades suggested throughout the years, 
a single standard protocol has not yet been agreed, not even with 
a model species like the mouse. The difficulties and challenges 
lay in the peculiar features of the follicle: a small “organ” within the 
ovary that possesses a unique vascular system built up around a 3D 
structure in which the oocyte is surrounded by companion, tightly 
connected, follicle cells. The oocyte growth is strictly dependent on 
autocrine and paracrine bidirectional signaling, the latter through 
gap junctions and transzonal projections, between the germinal 
and the somatic components of the follicle (Matzuk et al., 2002; 
Luciano et al., 2011). Specifically, follicle cells mediate the action 
of external signals and nourish the oocyte during its maturation. 
Due to the key role of this cross talk, the maintenance of the follicle 
three-dimensionality during the whole growth process is crucial for 
the correct acquisition of the developmental competence.

Follicles have been cultured under 2D or 3D systems, both trying 
to reproduce the complex bidirectional stimuli (e.g., exchange of 
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nutrients, soluble and insoluble signals and hormones) and both 
with advantages and drawbacks.

Historically, 2D systems were the first to be developed with 
remarkable results, including the growth of primary follicles to com-
plete maturation, fertilizability and full developmental competence 
(Eppig and Schroeder 1989; Cortvrindt et al., 1996; Eppig and 
O’Brien 1996). These methods comprise the culture in multi-well 
plates, microdrops, gel-coated dishes or membranes coated with 
extracellular matrix (ECM) proteins. Follicles are cultured on a 2D 
surface that only partly maintains the spatial configuration of the 
follicle, letting the follicle cells expand at the bottom of the dish, with 
the consequent partial loss of the oocyte-follicle cells interactions. 
For this reason, in recent years, much attention has moved to the 
use of matrices and culture systems capable of maintaining the 
follicle 3D architecture. Although this approach is still in its infancy 
and requires much improvement, some important goals have been 
achieved. The purpose of this review is to give state-of-the-art of 
3D methods that have been developed for the culture of mouse 
follicles, with the aim of providing an essential reference guide to 
those who are approaching these techniques with this species.
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Matrices

Most of the culture systems designed for 3D ovarian follicle 
growth imply the use of a matrix. Follicle encapsulation in such 
matrices allows a spherical growth of the follicle, with its surrounding 
follicle cells expanding in all directions. This system also aims at 
maintaining trophic factors, produced and released by granulosa 
cells, in the vicinity of the oocyte, thus avoiding their dispersion in 
the culture medium and conserving the nourishing role of these cells. 
In spite of the achievements obtained, it is not yet clear which is the 
biocompatible material best for its physical and chemical properties 
(e.g., toxicity, permeability, viscosity, elasticity, stiffness and handi-
ness). There are several types of matrices, either natural (agar/
agarose, alginate, hyaluronic acid (HA), collagen, fibrin, Matrigel) 
or synthetic [polyethylene glycol (PEG), polyvinyl alcohol (PVA), 
polylactic acid (PLA), polyglycolic acid (PGA)], that are commonly 
used. Natural polymers are more biocompatible and bioactive; 
synthetic polymers are standard in composition and predictable 
in their action/degradation. Among these, we detailed the use of 
collagen, alginate, HA, Matrigel and PEG matrices, giving, within a 
Table, a step-by-step summary of the methods that have produced 
the best results in terms of follicle growth, oocyte maturation and, 
when tested, fertilization and developmental competence. Specific 
references detailing the procedures are quoted within Tables 1-5.

Collagen matrix
Collagen is a biomolecule of the ECM with properties of flex-

ibility and elasticity, organized in a triple helix structure, involved 

in several aspects of the cell biology, including cell attachment 
and adhesion. It is commonly used in tissue or cell culture as 
a gel/matrix and, recently, it has been employed in the culture 
and growth of mammalian ovarian follicles (Table 1) (Gomes 
et al., 1999; Vanhoutte et al., 2009; Sharma et al., 2009). The 
mechanical properties of this biomaterial allow the maintenance 
of the 3D architecture of the encapsulated follicle, preventing 
cumulus cells migration and preserving both peri- and intra-
follicular ECM compartments (Gomes et al., 1999). Also, being 
a natural component of the ECM, the collagen matrix might favor 
intercellular communications compared to cultures in suspension 
or in adhesion on collagen-coated petri-dishes (Abakushina et 
al., 2011). Another positive property of the collagen matrix is its 
transparency that allows the operator to observe, using a phase 
contrast inverted microscope, the follicle throughout its growing 
phases (Torrance et al., 1989).

Three are the main protocols that have been developed and 
are still under testing: i) a collagen matrix, ii) a collagen matrix 
supplemented with ECM proteins such as fibronectin, laminin and 
RGD sequence (Arginine-Glycine-Aspartic Acid) and iii) collagen 
microdrops (mainly used in species other than the mouse; Sharma 
et al., 2009). Table 1 gives a summary of the most critical steps of 
the procedures used for the preparation of this matrix, the culture 
of follicles, the fertilization and development of the eggs obtained.

The culture of mouse follicles in a collagen matrix dates back 
to the late ‘80s, when preantral follicles were grown, over a period 
of 14 days, from a unilaminar to a multilaminar structure (Tor-
rance et al., 1989). The need for a metabolic coupling between 

Procedure Notes 

1. Matrix preparation 
Dilute  a  1% collagen solution in PBS at 4°C in the maturation medium and adjust pH to 7.4. 
See notes for different collagen sources. 

Sources of collagen: 
- in-lab extracted1,2 or commercial3 rat tail collagen (type I) (pure or diluted in PBS); 
- bovine dermal collagen4; 
- Costar Transwell-COL membrane inserts treated with equimolar mixture of Types I and III 

collagen from bovine placentae5. 

2. Follicle  isolation  
Isolate primary follicles from a 8-111/102/125 day-old female in isolation medium (see notes) 
supplemented with collagenase1,2,5. Or puncture the ovary of a 24-284 or 49-563 day-old female 
with a sterile needle and collect preantral or  antral follicles, respectively. 

Follicle isolation media:  
- Leibovitz-glutamax medium with  supplements  and phosphodiesterase 3 inhibitor3; 
- Hepes-buffered medium M199 with supplements1; 
- Eagle’s MEM with supplements, IBMX and FSH5 
- Eagle’s MEM with Hank’s salts and Hepes with supplements and FSH4; 
- M2 medium with FCS and dbcAMP2. 

3. Transfer of follicles into the matrix 
Using a sterile micropipette, transfer follicles (the number varies in different studies from 1 to 
502-4), with the minimum possible quantity of medium, in a multiwell-plate containing a 1% 
collagen solution. Incubate at 37°C for 10-20 min to induce gelatinization. Then, overlay with the 
appropriate follicle maturation medium (see point 4). 

- To avoid follicle loss, some authors indicate the need for a double gel encapsulation1,2; 

- Double-layer collagen matrix: follicles may be deposited at the interface between a lower and 
an upper layer4; 

- Two-steps culture: follicles cultured in a collagen matrix followed by IVM in suspension3. 

4. Follicle  maturation  
Depending on the follicle maturation stage, culture for 6-14 days at 37°C, 5% CO2, 5% O2, 90% N2.  
Medium is changed every 13,5 -31,2 days. 

Follicle maturation media: 
- α-MEM with glutamax and supplements3; 
- Bicarbonate-buffered medium M199 with supplements1; 
- Eagle’s MEM with supplements5 
- α-MEM with supplements 4; 
- MEM with FCS2. 

5. Removal of follicles from the matrix 
Replace the follicle maturation medium with the same medium containing collagenase I for 10 
min at 37°C. If needed pipette gently to denude oocytes. 

 

6. Maturation to MII 
Transfer the matured follicles or denuded oocytes in maturation medium and incubate for 15 hr 
at 37°C, 5% CO2, 5% O2, 90% N2. 

- The protocol reported is routinely used in our laboratory for the culture of follicles and it is 
taken from references6,7. Briefly, 30-40 follicles are matured in pre-equilibrated 500 µl 
bicarbonate-buffered α-MEM supplemented with 50 mIU/ml FSH, 10 ng/ml EGF, antibiotic, 3 
mg/ml BSA and 1 mg/ml fetuin, at 37°C, 5% CO2 in air for 18 hr.  

7. Fertilization 
Incubate cumulus cells-enclosed or cumulus cells-free MII oocytes in IVF medium containing 
2x106 sperm under mineral oil at 37°C, 5% CO2 for 2-3 hr; wash away sperm and transfer the 
oocytes in M16 medium8. 

- The fertilization protocol reported is routinely used in our laboratory, but other procedures 
may be adopted9. 

8. Preimplantation development 
Incubate the inseminated oocytes at 37°C, 5% CO2 in air8. 

- The protocol for in vitro preimplantation development reported is routinely used in our 
laboratory, but other procedures may be adopted9. 

TABLE 1

PROTOCOL FOR THE CULTURE OF MOUSE FOLLICLES IN A COLLAGEN MATRIX

References: 1) Torrance et al., 1989; 2) Carrol et al., 1991; 3) Vanhoutte et al., 2009; 4) Gomes et al., 1999; 5) Eppig and Schroeder 1989; 6) Yeo et al., 2008; 7) Albuz et al., 2010; 8) Zuccotti et al., 
2002; 9) Nagy et al., 2003.
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follicle and granulosa cells was also evidenced in a study by 
Eppig and Schroeder (1989), in which preantral follicles (< two 
layers follicle cells) from 12-day-old mice were cultured on Co-
star Transwell-COL membrane inserts treated with an equimolar 
mixture of type I and III collagen from bovine placenta, with the 
addition in the culture medium of isobutylmethylxantine (IBMX; 
to block meiotic resumption) and follicle stimulanting hormone 
(FSH). The culture protocol applied was capable of maintaining 
a metabolic coupling with a minimal migration of the granulosa 
cells from the cumulus. These two studies and those that fol-
lowed, represented the basis for further improvements in the 
mouse, but also in other species such as bovine (Abakushina et 
al., 2011), buffalo (Sharma et al., 2009) and human (Combelles 
et al., 2005; Vanhoutte et al., 2009). For example, supplementing 
the medium with molecules that inhibited/delayed meiotic resump-
tion substantially improved follicle growth, oocyte maturation and 
developmental competence to blastocyst [e.g., dbcAMP (Carroll 
et al., 1991) or phosphodiesterase 3 inhibitor (Vanhoutte et al., 
2009)]. Furthermore, the addition of FSH resulted in a substantial 
improvement of the preantral follicle culture (Gomes et al., 1999). 
Some protocols envisage a two-step procedure consisting of a 3D 
prematuration culture in collagen matrix, followed by the transfer 
of cumulus-enclosed oocytes to an in vitro maturation medium 
(Vanhoutte et al., 2009).

Whilst the advantages described above have encouraged the 
use of collagen matrices in follicle culture, a number of disad-
vantages have emerged. The preparation of a collagen scaffold 
has not yet been standardized and may vary from time to time 
and from lab to lab; also, when loading the gel and during its 
polymerization, follicles are submitted to a dramatic change in 

temperature that may cause damages; moreover, a critical step 
occurs when follicles are freed from the collagen for further culture 
or analyses. These drawbacks have prompted several groups to 
explore the use of an alginate matrix as an alternative (see below).

Calcium alginate matrix
Alginate is a linear polysaccharide, produced by brown algae, 

made of b-D-mannuronic and a-L-glucuronic acid units. Due to its 
biocompatibility, high affinity to water and handiness, alginate 
has been used for the culture of a variety of cell types, including 
human (Sidhu et al., 2012) and murine (Maguire et al., 2006) 
embryonic stem cells, induced pluripotent stem cells (Wei et al., 
2012), fibroblasts (Bohari et al., 2011) and, although still in its 
early days, it is the most commonly used biomaterial for ovarian 
follicle culture. 

Table 2 gives a summary of the most critical steps of the 
procedures used for the preparation of this matrix, the culture of 
follicles, the fertilization and development of the eggs obtained. 
Follicles are first placed singularly into microdrops of alginate 
and then transferred in a calcium solution whereby calcium ions 
form interchain ionic bridges that transform aqueous alginate into 
gel. This process ends with the encapsulation of single follicles 
within transparent beads that are easy to handle and allow mi-
croscopic observation of both the oocyte growth and granulosa 
cells proliferation throughout the culture period. The use of this 
matrix has several advantages. Since cell-matrix interactions are 
marginal, the encapsulated follicle can be easily released by a 
calcium-chelating agent, thus allowing a step-by-step analysis 
of the cellular and molecular characteristics that the oocyte and 
its companion follicle cells acquire during follicle maturation, 

Procedure Notes 

1. Matrix preparation 
Dissolve 1% sodium alginate in deionized water, purify by charcoal stripping to improve the 
purity of alginate and sterile through 0.22 µm filter. Reconstitute sodium alginate in 1X PBS to 
the chosen concentration. 

- Different sodium alginate concentrations may be used: 0.25%1-3, 0.5%1, 1%1, 1.5%1,4, 1.9%5, 
3%6. 

- Fibrin-alginate matrix: this protocol  includes several differences compared to the standard 
procedure described on the left column. Refer to original papers for details2,7. 

2. Follicle  isolation  
Isolate preantral follicles (two-layered or multilayered secondary follicles from 12/16 day-old 
mice, respectively3,4,8) by puncturing the ovaries with a sterile needle under a stereomicroscope 
in Leibovitz-15 (L-15) medium with 1% FCS at 37°C.  
Maintain follicles in α-MEM, 1% FCS at 37°C, 5% CO2 in air for 2 hr. 

- BSA3-5,8 may be used instead of FCS.  

3. Transfer of follicles into the matrix 
Using a hand-pulled micropipette, transfer single follicles into 2-3 µl droplets of alginate on a 
polypropylene mesh (100 µm); then, immerge the mesh into 50 mM CaCl2 encapsulation 
solution. 

- Encapsulation solution may be supplemented with NaCl1. 
- Alternatively, to form the beads, after the transfer of follicles in alginate, the mixture is loaded 

into a 1 ml syringe and extruded through droplets directly into a warmed beaker of 50 mM 
CaCl2 150 mM NaCl   5.  

4. Follicle  maturation  
Culture follicles in 100 µl α-MEM with 10 mIU/ml rFSH, 1mg/ml fetuin, 5 µg/ml insulin, 5 µg/ml 
transferrin, 5 ng/ml selenium, 3% BSA for each bead and incubate at 37°C, 5% CO2 in air, 7 pH 
for 10-12 days. Change half of the medium volume every two days. 

 

5. Removal of follicles from the matrix 
Release follicles in 100 µl L-15 medium with 10 U/ml alginate lyase at 37°C for 30 min.  

- Alternatively, release the follicles by adding 20 mM sterile EGTA to the medium and incubate 
at 37°C, 5% O2, 5% CO2, 90% N2 for 5 min5. 

6. Maturation to MII 
Transfer follicles into α-MEM with 10% FCS, 1.5 IU/ml hCG, 5 ng/ml EGF at 37°C, 5% CO2 in air 
for 16-18 hr. 

- Different supplements and concentrations are used for  α-MEM5: 0.3% BSA, 0.1% fetuin, 100 
ng/ml hFSH, 10 ng/ml EGF. 

- The protocol that follows is routinely used in our laboratory for the culture of follicles and it is 
taken from references9,10. Briefly, 30-40 follicles are matured in pre-equilibrated 500 µl 
bicarbonate-buffered α-MEM supplemented with 50 mIU/ml FSH, 10 ng/ml EGF, antibiotic, 3 
mg/ml BSA and 1 mg/ml fetuin, at 37°C, 5% CO2 in air for 18 hr. 

7. Fertilization 
Incubate cumulus cells-enclosed or cumulus cells-free MII oocytes in IVF medium containing 
2x106 sperm under mineral oil at 37°C, 5% CO2 for 2-3 hr; wash away sperm and transfer the 
oocytes in M16 medium11. 

- The fertilization protocol reported is routinely used in our laboratory, but other procedures 
may be adopted12. 

8. Preimplantation development 
Incubate the inseminated oocytes at 37°C, 5% CO2 in air11. 

- The protocol for in vitro preimplantation development reported is routinely used in our 
laboratory, but other procedures may be adopted12. 

TABLE 2

PROTOCOL FOR THE CULTURE OF MOUSE FOLLICLES IN AN ALGINATE MATRIX

References: 1) Xu et al., 2006; 2) Jin et al., 2010; 3) Mainigi et al., 2011; 4) Kreeger et al., 2006; 5) Pangas et al., 2003; 6) West et al., 2007; 7) Shikanov et al., 2009; 8) Parrish et al., 2011; 9) Yeo et 
al., 2008; 10) Albuz et al., 2010; 11) Zuccotti et al., 2002; 12) Nagy et al., 2003.
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including the ability of resuming meiosis (Pangas et al., 2003). 
An additional important feature is the possibility of determining 
the pores size of the alginate matrix (Rowley et al., 1999), thus 
enabling a control on the diffusion of test macromolecules such 
as proteins and hormones. Although different alginate concentra-
tions have been tested (from 0.25% to 3%), the most encourag-
ing results in terms of follicle growth, oocyte meiotic resumption 
and developmental competence, were obtained with the lowest 
(Xu et al., 2006; West et al., 2007). Whilst the addition of FSH is 
common to most culture protocols [either in the culture medium 
only (Kreeger et al., 2006; Xu et al., 2006; Shikanov et al., 2009; 
Mainigi et al., 2011; Parrish et al., 2011) or to both the alginate 
matrix and the culture medium (Heise et al., 2005)], other proce-
dures envisage the addition of ECM proteins such as collagen, 
laminin and fibronectin known to interact with follicles, regulate 
their growth and increase the overall maturation rate (Kreeger et 
al., 2006). An interpenetrating fibrin-alginate matrix, produced by 
the simultaneous or sequential polymerization of the two polymers 
to form a combined network, has recently been tested. When this 
was compared to alginate alone, follicle survival and growth rates 
showed no differences; instead, the rate of meiotically competent 
oocytes at the end of the culture period was significantly higher 
(Shikanov et al., 2009).

Though encouraging, these studies still leave a number of 
relevant questions to be addressed and problems to be solved. 
As highlighted by a very recent study, oocytes matured with this 
protocol show defects in spindle formation, chromosome align-
ment, abnormal cortical granule biogenesis and failure to extrude 
the first polar body (Mainigi et al., 2011).

Hyaluronan hydrogel
The glycosaminoglycan HA is a component of the extracellular 

matrix, especially of the soft connective tissue, involved in the 
maintenance of the matrix structure (space filler), the homeostasis 
of the extracellular space and the steric interactions with other 
components of the matrix, thus forming a network of macromol-
ecules that interacts with the surrounding cells (Laurent and 

Fraser 1992). For many years, the use of HA has found numer-
ous applications as a drug delivery vehicle (hydrogels particles/
microgels/nanogels; Xu et al., 2012) or, in gene therapy, as a 
scaffold to enclose and deliver plasmid DNA to the diseased 
tissue (Gojgini et al., 2011).

Its characteristics of plasticity and viscosity, together with its 
biocompatibility, make HA a good candidate as a biomaterial 
for the in vitro culture of many cell types and tissues. Moreover, 
HA can be easily dissolved in water (HA hydrogel) and, when 
needed, it is quickly degraded with the help of enzymes (e.g., 
hyaluronidase) (Isayeva et al., 2010). Once HA is turned into a 
hydrogel, its optical transparency allows the observation of the 
cultured cells inside; also, its physical features enable this mate-
rial to be molded into many different and functional shapes, thus 
permitting the operator to adjust the culture conditions to specific 
cell types and to obtain a gel with the pursued characteristics of 
morphology, stiffness and bioactivity (Desai et al., 2012). It is for 
its bioactivity that a number of researchers prefer HA hydrogel 
to inert synthetic biomaterials such as PEG (Xu et al., 2012).

HA hydrogel has been used, as a tissue-engineered scaf-
fold, for the culture of cells such as mesenchymal stem cells to 
produce cartilage (Erickson et al., 2012), haematopoietic stem 
cells (Demange et al., 2012), human adipose-derived stem cells 
to differentiate into corneal stroma (Espandar et al., 2012), en-
dothelial progenitor cells (Camci-Unal et al., 2012) and human 
embryonic stem cells (Gerecht et al., 2007).

As for the in vitro culture of ovarian follicles, a recent novel 
method describes, with promising results, the culture of mouse 
fresh or vitrified preantral follicles embedded in a 3D scaffold 
appropriately shaped to form a cylindrical bead (Desai et al., 
2012). Table 3 gives a summary of the most critical steps of the 
procedures used for the preparation of this matrix and the culture 
of follicles. Compared to other shapes tested, the cylindrical bead 
allows the maintenance of a better 3D environment, a decreased 
follicle extrusion and, when using a 3 mg/ml HA concentration, 
an improved transparency and easiness of observation. HA hy-
drogel has been used alone or together with ECM components 

Procedure Notes 

1. Matrix preparation 
Prepare a 3 mg/ml  tyramine-based HA in PBS or Global mediumTM (LifeGlobal). Add MatrigelTM (BD Bioscience) (ratio 
1:9)  on ice to form ECM-HA. 
Activate the HA-gel by adding 5 µl horse radish peroxidase to 500 µl aliquots of HA; then expose 25 µl of activated HA to 
1 µl 0.03% hydrogen peroxide. Gelification occours in 3-4 min. 

 

2. Follicle isolation  
Collect secondary preantral follicles (  120 µm in diameter) in pre-warmed L-15 medium with 0.1% collagenase on a 
laminar flow bench top at 37°C for 90 min. Change medium every 30 min. Release follicles from the stroma using pipette 
tips of decreasing diameter and eventually a glass micropipette. Repeat the collagenase digestion with the undigested 
tissue. Wash repeatedly the isolated follicles before culture. 

 

3. Transfer of follicles into the matrix 
Transfer a group of 8-10 follicles in a 25 µl drop of activated HA. Join this drop with a 1 µl drop of 0.03%  hydrogen 
peroxide. Use two 21G needles with a 90° angle-bent edge to shape the beads to a cylindrical form1. 

- Three different methods were tested: drops,  microcapillary plugs 
and cylindrical beads. The latter allowed the maintenance of a 
better 3D environment and decreased follicle extrusion. 

4. Follicle maturation  
Transfer single HA-embedded follicles in 800 µl α-MEM with 5% FBS, 100 mIU/ml FSH, 10 mIU/ml LH, ITS (Invitrogen) in 
a 24-well plate. Culture follicles for 12 days at 37°C with 6% CO2 in air. Change half of the medium volume every 24 hr. 

 

5. Maturation to MII 
Culture for 18-20 hr in α-MEM (see point 4) supplemented with 1.5 IU/ml hCG and 5 ng/ml EGF. 

 

6. Removal of follicles from the matrix 
With the help of a tuberculin syringe, remove follicles from HA hydrogel exposing for few min to 10 U/ml hyaluronidase. 

 

7. Fertilization 
Not tested yet. 

 

TABLE 3

PROTOCOL FOR THE CULTURE OF MOUSE FOLLICLES IN A HYALURONAN HYDROGEL1

References: 1) the protocol described is from a single study (Desai et al., 2012).
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(ECM-HA). After 12 days of culture, estradiol secretion per follicle 
was significantly higher in ECM-HA compared to HA or control. 
Although the rate of germinal vesicle breakdown (GVBD) in HA 
and ECM-HA was significantly higher compared to control samples 
(a-MEM without encapsulation), the rate of MII oocytes obtained 
remained higher in control, indicating the need for further studies.

Matrigel
ECM components are often used, added to the culture medium 

or to the matrix, in cell/tissue 3D cultures: they promote cell sur-
vival, proliferation and differentiation. Every component can be 
added singularly (fibronectin, laminin, collagen) or as a complex 
(e.g., Matrigel). Matrigel is an extract of the Engelbreth-Holm-
Swarm mouse sarcoma, rich in proteins of the ECM, that in vitro 
can mimic the basal lamina function, thus acting as a substrate 
that sustain the viability and the growth of the cells in culture. 
It is made of laminin (the major component), collagen type IV, 
heparin sulfate proteoglycan, entactin and growth factors (e.g., 
TGF-b and EGF) (Oktem and Oktay 2007; Zhu et al., 2012). 
Matrigel has been used for the in vitro culture of many cell types, 
including murine (with the addition of activin-A, a member of the 
TGF-b superfamily; Oktem and Oktay 2007) and human (Hovatta 
et al., 1997, 1999; Xu et al., 2009) ovarian follicles, promoting 

their multilayer development and antral space formation. Table 
4 gives a summary of the most critical steps of the procedures 
used for the preparation of this matrix and the culture of follicles.

Synthetic matrices
The matrices described above derive from natural polymers 

that cross-link or self-assemble into hydrophilic structures called 
hydrogels, which have the advantage of being highly biocompat-
ible and bioactive. Nevertheless, the difficulty in modifying these 
natural biomaterials to obtain desired physical properties has 
prompt tissue engineers to design novel synthetic matrices with 
well-defined mechanical and degradation properties (for a review 
see Tibbitt et al., 2009). To date, PEG hydrogel is one of the best 
tested in the culture of ovarian follicles (Shikanov et al., 2011). A 
major advantage in the use of PEG hydrogel is the biochemical 
nature of this molecule that, following follicle encapsulation, is slowly 
degraded by proteases that the growing follicle secretes during 
culture. This local gel degradation generates the space needed 
for follicle volumetric expansion (up to 17-fold), while maintaining 
the global integrity and overcoming the growth-limiting compres-
sive forces exerted by other types of matrices. PEG, which was 
previously shown to maintain the viability of encapsulated cells 
(Bryant and Anseth 2002), enables, through 10 days of culture, 

Procedure Notes 

1. Matrix preparation 
Liquefy growth factor-reduced (GFR) MatrigelTM (BD Bioscience) at 4°C and dilute 1:1 in culture medium. Transfer 200 
µl Matrigel in a 8-well-format chamber slides. 

 

2. Follicle isolation  
Digest pieces of ovaries in Hepes-buffered DMEM-F12 (supplemented with 5% BSA) with collagenase IA, DNase I for 
30 min at 37°C. Isolate preantral follicles with 28-30G needles under a stereomicroscope. 

 

3. Transfer of follicles into the matrix 
Transfer follicles individually into the 8-well-format chamber slides with liquefied Matrigel and incubate at 37°C for 30 
min to allow polymerization. 

 

4. Follicle maturation  
Add 100 μl α-MEM on the top of Matrigel and culture for 7 days at 37°C, 5% CO2 in air with or without 30 ng/ml activin-
A. 

- α-MEM (serum-free) supplemented with: 100 mIU/ml recombinant FSH, 
3 mg/ml BSA, ITS+3 (insulin 10 μg/ml, transferrin 5.5 μg/ml, selenite 5 
ng/ml; Invitrogen) and 100 U/ml penicillin-G, 100 μg/ml streptomycin, 
0.25 μg/ml amphotericin-B. 

5. Maturation to MII 
Not tested yet. 

 

TABLE 4

PROTOCOL FOR THE CULTURE OF MOUSE FOLLICLES IN MATRIGELTM (1)

References: 1) the protocol described is from a single study (Oktem and Oktay 2007).

Procedure Notes 

1. Matrix preparation 
Dissolve PEG tetravinyl sulfone and plasmin sensitive peptides at a reactive group stoichometric ratio of 
1:1.1 (PEG:peptides) in isotonic HEPES buffer at 7.4 pH and mix at 1:1 volumetric ratio1. 

- The preparation of this hydrogel involves a sequence of many steps, for details see 
references1,2. 

2. Follicle isolation  
Isolate preantral follicles from 14/15 day-old mice by puncturing the ovaries with a sterile needle in L-15 
medium with 10% FCS, 100 U/ml penicillin and 100 mg/ml streptomycin3. 

 

3. Transfer of follicles into the matrix 
Add a single follicle to each 5 µl gel and cast between parafilm-coated glass slides. Let the gel cross-link in 
a humidifier incubator at 37°C for 5 min. 

 
 
 

4. Follicle maturation  
Transfer the follicle-containing hydrogel in a 96 well plate and culture follicles in 150 µl α-MEM with 3% 
BSA, 10 mIU/ml rFSH, 1 mg/ml bovine fetuin, 5 µg/ml insulin, 5 µg/ml transferrin, 5 ng/ml selenium and 
incubate at 37°C, 5% CO2 in air for 10 days.  Change half of the media volume every two days. 

 

5. Removal of follicles from the matrix 
Mechanically retrieve follicles at the end of the culture. 

 
 

6. Maturation to MII 
Culture follicles in α-MEM with 10% FCS, 1.5 IU/ml hCG, 5 ng/ml EGF at 37°C, 5% CO2 in air for 16 hr. 

 

7. Fertilization 
Not tested yet. 

 

TABLE 5

PROTOCOL FOR THE CULTURE OF MOUSE FOLLICLES IN A PEG HYDROGEL

References: 1) Lutolf and Hubbell, 2003; 2) Shikanov et al., 2009; 3) Cortvrindt et al., 1996.
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the survival and growth of follicles from the secondary to the fully-
grown antral stage. These antral oocytes are capable of resuming 
meiosis and reach the MII phase (Shikanov et al., 2011). Table 5 
gives a summary of the most critical steps of the procedures used 
for the preparation of this matrix and the culture of follicles. 

Another synthetic hydrogel, with similar features, is PVA that 
maintains its mechanical properties and cell viability for several 
days of culture (Alves et al., 2012), although it remains yet untested 
on ovarian follicles.

Non-matrices

Recent attempts have been made to maintain the 3D orga-
nization by culturing follicles in inverted microdrop suspension 
(Wycherley et al., 2004; Nation and Selwood 2009), rotating wall 
vessels (Rowghani et al., 2004), orbiting test tubes (Rowghani 
et al., 2004; Heise et al., 2005, 2009) or in roller bottle systems 
(Nation and Selwood 2009). In an inverted microdrop suspension 
system, mouse follicles were cultured for up to 6 days in 96-well 
round-bottomed plates that allowed the maximum oxygen access 
and nutrients supply at the media/gas interface and supported 
growth better than upright cultures (Wycherley et al., 2004). Similar 
results were achieved culturing marsupial primary follicles up to 
the antral stage (Nation and Selwood 2009).

Orbiting test tubes and rotating wall vessels techniques maintain 
follicles in suspension throughout the culture period by agitating 
the medium, thus preventing the cells from adhering to the culture 
plate and flattening (Heise et al., 2005, 2009). Rotating wall ves-
sels resulted in the damage of rat follicles, which, instead, showed 
an overall increase in their growth rate when cultured in orbiting 
test tubes compared to conventional culture systems (Rowghani 
et al., 2004).

Conclusions

The making and development of an organ in vitro is one of the 
main challenges of future research that will involve the collabora-
tive work of biologists, biotechnologists, bioengineers, physicists, 
chemists and physicians. Among the different organs that are 
under study, the ovary has a peculiarity. Each ovarian follicle, for 
its anatomo-histological characteristics and its surrounding own 
proper blood vessels network, may be considered as a distinct 
“small organ” that can be isolated since its early stages of develop-
ment and whose maturation can be achieved separately from the 
ovary. The main worry is the maintenance of the 3D architecture 
throughout the whole culture period together with the multitude of 
physical and chemical relationships occurring between the oocyte 
and the surrounding follicle cells.

In this review we have shown that, although still in its early years, 
the 3D in vitro culture of mouse ovarian follicles has made important 
methodological advancements. Biocompatible matrices used before 
for the culture of various cell types have been tested and proved 
to be amenable to encapsulate the follicle, allow its observation 
during growth and the exchange of gas and metabolites. Clearly, 
as underlined above, a great deal of work still remains to be done, 
both with the use of the known biomaterials and with the develop-
ment of new ones. The results obtained are encouraging and will 
help to improve our understanding of the bidirectional relationship 
between the female gamete and its companion somatic cells.
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