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ABSTRACT  Aneuploidy is extremely high in aged human oocytes. Its cellular origin has been elu-
sive. Trisomy data implicate predominantly meiosis I errors in the genesis of oocyte aneuploidy. 
Susceptible recombination patterns increase risks for nondisjunction. Cytogenetic analyses of aged 
human oocytes and embryos from assisted reproduction (ART) suggest that aneuploidy primarily 
relates to precocious chromatid separation. Oocytes express a spindle assembly checkpoint (SAC), 
but do not arrest maturation in the presence of improperly attached or single, unattached chromo-
somes. The SAC may be more permissive by altered gene expression in aged oocytes. Aged oocytes 
frequently exhibit precocious loss of chromosome cohesion. In experimental models, cohesion 
cannot be restored once lost, a process possibly occurring during long meiotic arrest. Maternal 
age, hormonal stimulation, disturbed metabolism, and depletion of the follicle pool contribute to 
mitochondrial dysfunction, spindle aberrations, and errors in chromosome segregation. Caloric 
restriction and antioxidants reduce mitochondrial dysfunction and aneuploidy in aged rodent’s oo-
cytes. Loss of chromosome cohesion appears to be a major risk factor for aneuploidy by disturbing 
the sequential separation of homologs and chromatids. A permissive SAC, the presence of risky 
meiotic exchanges, changes in expression, and failures to resolve improper chromosome attach-
ments, as well as mitochondrial dysfunction may synergistically increase susceptibility to meiotic 
errors. A healthy life style, mild stimulation and an optimal environment may delay ageing and 
sustain control over chromosome disjunction, whereas loss of cohesion appears to be irreversible.
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Introduction

Human oocytes are amongst the most long-lived cells in the body. 
Meiosis is already initiated in the foetal ovary when primary oocytes 
from oogonial mitotic divisions enter meiotic S-phase and initiate 
prophase of meiosis I (Fig. 1). For this, the replicated homologous 
chromosomes each containing two chromatids connected physically 
by cohesion complexes condense chromatin, pair and recombine 
with the aid of a synaptonemal complex, a unique meiotic pairing 
structure (indicated by tripartite red/yellow lines between homologs 
in Fig. 1) during leptonene, zygotene and pachytene until diplotene 
stage of prophase I of meiosis. Unlike in male meiosis in which 
there is a continuous progression from prophase I to completion 
of first and second meiotic divisions in the testis of the sexually 
mature male, oocytes become meiotically arrested for long peri-
ods of time at prophase/G2 phase of meiosis I (termed dictyate 
stage), in the human for up to five decades, until they complete 
meiosis; primordial follicles containing the dictyate stage blocked, 
prophase I meiotically arrested primary oocytes are formed prior 
to or shortly after birth from nests of oocytes (nest breakdown), 
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and recruit granulosa cells (Fig. 1). These primordial follicles first 
have to be recruited into the growing stage, many become atretic 
and die, and a fraction undergoes an extensive growth phase from 
the primary to the large antral stage of folliculogenesis (Fig. 1) 
before the oocytes reach full growth and acquire the competence 
to resume maturation to metaphase II (Fig. 1, right side) and emit 
a first polar body (1.PB) containing one set of dyads/metaphase II 
chromosomes with two sister chromatids (Fig. 1). Since the follicle 
pool is restricted in size, the recruitment of primordial follicles and 
follicular atresia eventually lead to ovarian depletion (indicated in 
Fig. 1), when cycles eventually become irregular and finally pool 
size reaches a critical size, ovulation seizes and menopause occurs.

Apart from dictyate stage there is a second meiotic arrest in 
oocytes, in most mammals at metaphase II (MII arrest; Fig. 1). 
Although chromosomes are aligned and attached to spindle fibres, 
a condition that leads to anaphase progression in mitosis, meta-
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phase II arrest occurs. After fertilization oocytes complete meiosis 
II, and emit a second, haploid polar body (2.PB; Fig. 1). A haploid 
male and female pronucleus are subsequently formed followed by 
first zygotic S-phase in the one-cell embryo. Adult ovaries contain 
oocyte stem cells that might possess the ability to replenish the 
ever declining follicle pool (White et al., 2012), but their physiologi-
cal relevance is currently unclear, and the follicular endowment, 
continuous recruitment and follicular atresia determine the length 
of the reproductive period in the human.

The human oocyte is extraordinary susceptible to meiotic errors 
leading to aneuploidy and autosomal or gonosomal numerical chro-
mosomal aberrations in the zygote and embryo. Aneuploidy is the 
leading cause of pre- and postimplantation developmental arrest, 
implantation failure, spontaneous abortion or birth of a chromosom-
ally unbalanced child (e.g. one with three instead of two copies of 
a chromosomes termed trisomic) (Nagaoka et al., 2012). Thus in 
assisted reproduction more than 75% of blastocysts from women 
over the age of forty are aneuploid (Fragouli and Wells, 2011). 
Correlations between children with Down syndrome (trisomy 21) 
and maternal age have been recognized already for many years 
(Penrose, 1933; Bond and Chandley, 1983; Hassold & Jacobs, 
1984) but the origin of the disturbances causing chromosome 
nondisjunction in aged oocytes and responsible for reduced fertil-
ity and the increased risks for a trisomic 21 or another aneuploid 
conceptus have remained unknown until recently. 

On the subcellular level, it has been postulated that it is mainly the 
long meiotic arrest that may be causal to age-related aneuploidy and 
represents the major source of disturbances leading to the oocytes’ 
failures of proper chromosome disjunction (termed nondisjunction). 
According to the free radical theory of ageing, an accumulation of 
damage might increase the numbers of dysfunctional organelles, 
in particular mitochondria (Harman, 1956), due to the prolonged 
exposure to reactive metabolites and formation of reactive oxygen 
species (ROS). Low steady-state levels of ROS perform signalling 
functions to coordinate metabolic and genetic processes but in-
creased ones can damage cells. ROS and advanced glycation end 
products (AGEs) from metabolism that fail to become immediately 
detoxified can contribute to adduct formation on lipids, proteins and 
DNA and induce rises in mutations in mitochondrial and nuclear 
DNA (for references see: Eichenlaub-Ritter et al., 2011; Tatone 
et al., 2011). Reduced local supply of high energy substrates like 
ATP by mitochondria can affect spindle formation and regulation in 
the aged oocyte resuming maturation, such that aberrant spindles 
become a hallmark of aged oocytes (e.g. Battaglia et al., 1986). 

Apart from chronological age and length of the arrest period, 
the depletion of the primordial follicles in the ovary may be most 
critical by altering the follicular and oocytes’ microenvironment and 
hormonal homeostasis (Brook et al., 1984). Within the ovary and 
follicle, a reduced oxygen supply by insufficient vascularisation 
(Gaulden, 1989), and altered hormonal homeostasis (e.g. elevated 
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follicle stimulating hormone, FSH) might cause compromised inter-
actions and suboptimal paracrine and autocrine signalling within 
the follicle and between the aged oocyte, the somatic compartment 
and the neuro-endocrine axis thereby increasing the risks for errors 
in chromosome segregation. The genetic background affecting 
the initial formation/survival of oocytes and follicles before and 
after birth in addition to exposures to toxicants e.g. to endocrine 
disrupting chemicals or contaminants in drinking water, can affect 
health and survival of oocytes and follicles (Susiarjo et al., 2007; 
Pacchierotti et al., 2007). Finally, life style factors and pathologies 
may play a role in affecting mitochondrial function/metabolism (e.g. 
diabetes) (Wang et al., 2009) that ultimately can result in oocyte 
ageing, reduced oocyte quality, aneuploidy and premature ovarian 
insufficiency (POI). 

Since chromosomes appear differentially susceptible to age-
related nondisjunction (reviewed by Hassold and Hunt, 2001; 
Nagaoka et al., 2012) it has been postulated that events in the 
foetal ovary are of relevance. At prophase I stage, chromosomes 
begin to pair and recombine in the foetal ovary (Fig. 1). Oocytes 
resting within primordial follicles may contain specific ‘risky’ recom-
bination patterns that will predispose oocytes ovulated late in the 
reproductive life to random chromosome segregation, particularly 
at meiosis I.

In order to discriminate between influences of the chronological 
maternal age per se (reflected in the length of the meiotic arrest), 
the size of the follicle pool (reflected in markers like anti-muellerian 
hormone, AMH), and the hormonal status (e.g. increases in follicle 
stimulating hormone, FSH), incidence of trisomic conceptions and 
abortions have been analysed in retrospective and prospective 
studies. For instance, women with a trisomy 21 pregnancy at a 
younger age have often lower AMH levels, suggesting a correlation 
between aneuploid oocytes and a limited ovarian reserve (van der 
Stroom et al., 2011). Accordingly, younger poor responding patients 
(.36 years) who had presumably a reduced ovarian reserve, had a 
statistically significant increased miscarriage rate, possibly related 
to an increased aneuploidy rate, compared to normal responders 
(Haadsma et al., 2010). However, elevated FSH but not AMH re-
lated to trisomic conceptions in another study (Kline et al., 2011) 
suggesting that hormonal imbalance may influence chromosome 
segregation, for instance, by directly affecting maturing oocytes 
(Xu et al., 2011). In a mouse model, unilateral ovariectomy resulted 
in increased numbers of spontaneously ovulated metaphase II 
oocytes with unaligned chromosomes in the middle-aged females 
with depleted follicle pools, unlike age-matched controls but similar 
to the advanced aged spontaneously ovulated control oocytes. 
The pole-to-pole distance of the metaphase II spindle related to 
chronological age of the mother instead of pool size, suggesting 
that both, age and follicle depletion, contribute to risks for meiotic 
errors (Eichenlaub-Ritter et al., 1988). A recent meta-analysis of 22 
genome-wide association studies on natural age at menopause in 
humans identifed genes that may contribute to rapid follicle depletion 
and reduced pool size (Stolk et al., 2012). Such approaches can 
help to identify genes associated with increased risks for errors in 
chromosome segregation in aged oocytes that may be correlated 
to reduced pool size. 

There may be also a link to altered metabolism in age-related 
nondisjunction. For instance, older animals in many laboratory 
strains of mice have an increased body weight and are obese. 
In oocytes of the CD1 strain this appears associated with spindle 

defects, higher serum cholesterol, abnormal glucose tolerance and 
lower levels of circulating AMH hormone compared to the younger 
and leaner controls (Hirshfeld-Cytron et al., 2011). At the cellular 
basis it has been noticed that spindle aberrations become also 
increased in aged human oocytes (e.g. Battaglia et al., 1986) and 
thereby are a hallmark of reproductive ageing. This might relate to 
altered gene expression, e.g. of spindle, and cell cycle regulating 
factors (see below).

Furthermore, several studies imply that the kinetics of oocyte 
maturation become perturbed, either shortened or protracted 
(e.g. Eichenlaub-Ritter and Boll, 1989; Volarcik et al., 1998), sug-
gesting links of increased aneuploidy to loss of cell cycle control. 
Furthermore, chromosomes frequently fail to properly align at the 
spindle equator in aged oocytes (termed congression failure), and 
this has been correlated to spindle aberrations as well as altered 
expression patterns and cell cycle control (e.g. Pan et al., 2005). 
Ultimately it may be that chromosomes that lack recombination 
and chiasmata or behave as ‚functional’ univalents due to loss of 
chromosome cohesion cannot be properly attached to the spindle, 
orient to opposite spindle poles, and are likely to randomly segre-
gate and increase oocyte aneuploidy (see below). 

In the following the lesions and events contributing to oocyte 
ageing and increases in meiotic errors at the cellular basis will be 
discussed in more depth.

Recombination rate, and meiosis I vs. meiosis II errors 
in human oocytes

While aneuploidy is rare in human sperm (about 1-2% on aver-
age in sperm of healthy males) about 20% of all human oocytes 
over all maternal ages carry a numerical chromosomal aberrations 
(Hassold et al., 2007). Polar body analysis by array comparative 
genomic hybridization to assess imbalance in all chromosomes 
show that oocyte aneuploidy increases to rates of 50% or more 
in oocytes of women of advanced age (e.g. Fragouli et al., 2011; 
Handyside et al., 2012). After fertilization many aneuploidies will 
give rise to developmental arrest, and implantation failure of the 
embryo (recently discussed by Fragouli and Wells, 2011; Nagaoka 
et al., 2012). Surviving autosomal aneuploidies are likely to induce 
spontaneous abortion and stillbirth, and only a minority will be able 
to develop further and cause aneuploidy and trisomy like Down 
syndrome in life births (Nagaoka et al., 2012). Maternal age and 
oocyte aneuploidy are thus the predominant cause of reduced 
fertility in aged women and low success rates in ART. 

In the past, presence of polymorphisms at or close to the 
centromere and along chromosome arms of extra chromosomes 
in trisomies have been used to trace the origin of chromosomal 
errors to either maternal (indicated by grey chromatids) or paternal 
(indicated by blue chromatids in Fig. 2) meiosis I or meiosis II, or 
a postzygotic mitotic error in chromosome segregation. It appears 
that the majority of errors giving rise to the common trisomies in 
naturally conceived offspring in humans involve chromatids of 
both maternal homologs and were therefore initially believed to 
be derived by a first meiotic nondisjunction event in oogenesis 
(reviewed by Hassold and Hunt, 2000). If both homologs fail to 
divide at meiosis I but both of their sister chromatids of each ho-
molog segregate to the second polar body, a sister chromatid of 
each homolog would be retained in the oocyte. In fact, 76%, 100%, 
65% and 94% of extra chromosomes in trisomies 15, 16, 21 and 
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22, respectively, appear associated with two maternally-derived 
chromosomes that come from both maternal homologs except at 
sites at which recombination occurred. Trisomy 18 is an excep-
tion as 58% of cases involve nondisjunction of chromatids. The 
trisomy 18 cases contain two copies of maternal chromosomes 
with identical centromeres and alleles of one homolog except for 
sites of recombination. Only 33% are meiosis I errors apart from 
11% postzygotic mitotic errors in trisomy 18 (Hassold et al., 2007). 
These findings already suggest that susceptibility to meiotic errors 
at younger or advanced maternal ages is chromosome specific 
and potentially involves differences in length of the chromosome 
and distribution of exchanges on individual bivalents. This can be 
also deduced from the age-related increase in the incidence of 
trisomies. For instance, the risk for trisomy 16 increases over all 
maternal ages while that for trisomy 15 or 21 is comparatively low 
at younger ages but increases exponentially from about 35 years 
of age (reviewed by Nagaoka et al., 2012).

Detailed analysis of the recombinational history of extra chro-
mosomes more recently also suggest particular risks depending 
on exchange patterns, for instance, in large cohorts of trisomy 21 
cases and age-matched euploid controls (Oliver et al., 2008). Thus, 
a large percentage (about 40%) of the errors in trisomy 21 involve 
achiasmatic chromosomes that lack an exchange. The absence of 
recombination appears therefore to predispose oocytes to meiotic 
errors of this and other chromosomes at all maternal ages. More-
over, the recombination map of extra maternally derived chromo-
somes 21 involving nondisjunction of homologous chromosomes 
(meiosis I errors) in oocytes of younger mothers appears shorter 
compared to the normally segregating chromosomes. Frequently 
only a single exchange close to the distal part of the chromosome, 
in the proximity of the telomere has been detected. Amazingly, extra 
chromosomes in trisomy 21 derived from a maternal first meiotic 

error in the aged oocytes appear to have a very similar recombina-
tion map as those segregating normally and leading to a euploid 
child. Therefore, it appears that a single distal exchange is risky, 
but even those chromosomes 21 with a normal exchange pattern 
become susceptible to a first meiotic error within an aged ooplasm. 
Finally, those trisomies 21 involving chromatids of one homolog 
and presumably derived by a second meiotic error had a longer 
recombination map compared to the normally segregating chromo-
some 21 (Oliver et al., 2008). According to this, chromosomes 21 
with an excess of recombination in the proximal, pericentromeric 
part of the chromosome appear highly susceptible to fail to separate 
chromatids in meiosis II, particularly in an aged ooplasm. Since 
chiasmata usually resolve at meiosis I, an event at first meiosis 
must influence behaviour of chromosomes at anaphase II. For 
instance, a failure to separate the two homologs that are connected 
by a pericentromeric exchange at anaphase I may cause that the 
two homologs remain in the ooplasm and disjoin reductionally and 
with a delay at meiosis II instead of separating their chromatids at 
second meiotic division. Accordingly, the first polar body would not 
contain this chromosome while two chromatids of one homolog of 
a bivalent would remain in the oocyte and embryo and two also in 
the second polar body. This mimics a classical second meiotic error 
in which the two chromatids derived from a normal first meiosis 
fail to disjoin at anaphase II. 

Since different trisomies have different susceptibilities to meiosis 
I or II errors, and distribution of exchanges appears differentially 
related to risks for first or second meiotic nondisjunction event 
in young or aged oocytes, it was postulated that more than one 
event affects ordered chromosome segregation at oogenesis at 
the cellular level. Absence or increases in steric constrains of the 
orientation and attachment of centromeres to spindle fibres to 
opposite poles in certain types of distribution and numbers of ex-

X 

P 
P 

P 
P 

P 

P 

P 
P 

P 

P 

P 
P 

P 
P 

P P 

PP2A 

P 

P 

P 

P 

PP2A 

Sgo2 

P 
PP2A 

Metaphase II Anaphase II 

Metaphase I Anaphase I 

Cdk1 
Cyclin B1 APC/Ccdc20 

Securin  
Separase P 

Securin  
Separase 

Cdk1 
Cyclin B1 X 

X 

APC/Ccdc20 
EMI2 

P 

P 

APC/Ccdc20 

EMI2 X 

P 

Separase 

P 

Separase 

Cdk1 
Cyclin B1 

Securin  
Separase 

Cdk1 
Cyclin B1 X 

X 

Wee1

P 

Closed 
cohesin 
complex 

Open 
cohesin 
complex 

Centro- 
mer 

Micro- 
tubule 

Active 
enzyme 

1.PB 2.PB 

Fig. 2. Oocyte maturation and 
chromosome segregation at 
anaphase I and anaphase II by 
activity of APC/Ccdc20 recogniz-
ing and causing degradation of 
cyclin B1 and securin. Release 
and activation of separase causing 
proteolysis of phosphorylated (p) 
cohesin and opening of cohesin 
complex. Prevention of phos-
phorylation by SGO2 and PP2A 
recruitment to centromeres, and 
activity of centromeric PP2A at 
meiosis I; fertilization induced 
destruction of EMI2 inhibitor of 
APC/Ccdc20 and progression to 
anaphase II; formation of first 
polar body (1.PB) containing one 
homolog with two sister chroma-
tids of each autosome as a result 
of normal anaphase I, and forma-
tion of the second polar body (2. 
PB) containing one chromatid of 
each autosome after completion 
of anaphase II, respectively. For 
further explanation, see text.



Oocyte ageing, aneuploidy and its cellular basis    845 

changes on each chromosome may pose a risk over all ages (e.g. 
one distal exchange in the short, acrocentric chromosome 21) or 
preferentially increase risks in aged ooplasm (e.g. a pericentromeric 
exchange of chromosome 21). As an example, chromosomes 15 
with 3-4 exchanges contribute to meiosis I errors and trisomy 15 
in oocytes of aged mothers in about 40% of trisomy 15 cases but 
not in those from younger mothers (Robinson et al., 1998). 

Recombination rates and distribution of crossovers differ greatly 
between individuals and between male and female meiosis. While 
in male meiosis distal exchanges prevail, the overall recombination 
map is longer and there tend to be more interstitial exchanges in 
oogenesis compared to spermatogenesis (e.g. Cheng et al., 2009). 
Thus it appears that gender differences in recombination rates and 
pattern that relate also to susceptibility to meiotic errors result from 
differences in the regulation of female and male meiosis. A master 
regulator influencing hot spots of recombination and crossover 
has only recently been identified (Baudat et al., 2010; Grey et al., 
2011). One variant of a gene controlling recombination rate affects 
male meiosis differently from female meiosis (Kong et al., 2008). 
Rodent models suggest that there are common mechanisms but 
also sexual dimorphism in activity of gene products involved in 
pairing, recombination and DNA repair as well as in checkpoint 
controls causing meiotic arrest between male and female meiosis 
(Hunt and Hassold, 2002). For instance, failures to form the synap-
tonemal complex in mice deficient in Hormad1 component of the 
synaptonemal complex cause pachytene arrest in spermatogenesis, 
while oocytes more likely progress to meiosis I and metaphase 
II. Embryogenesis arrests at blastocyst stage presumably be-
cause of oocyte-derived aneuploidy (Shin et al., 2011). Oocytes 
are also more likely to escape a meiotic block e.g. in response 
to a deficiency in genes in DNA repair (e.g. mhl1) and become 
susceptible to aneuploidy by presence of univalents (Nagaoka et 
al., 2011). The differences in checkpoint control also contribute to 
gender-specific transmission bias of reciprocal translocations and 
sterility since they are more frequently causing meiotic arrest in 
male compared to female meiosis (reviewed by Kurahashi et al., 
2012). The synaptonemal complex has been studied with respect 
to the distribution of recombination nodules (dark dots in Fig. 1) 
enriched in recombination and DNA repair enzymes (e.g. the Mhl1 
protein). These mark sites of exchanges. A large percentage (about 
10%) of human oocytes contained one or several crossover-less 
chromosomes while achiasmatic chromosomes are rare in sper-
matogenesis (Cheng et al., 2011). When oocytes with achiasmate 
chromosomes (Fig. 3D) escape checkpoint surveillance, they can 
contain univalents after resumption of maturation that predispose 
to random segregation and aneuploidy. 

Hendersen and Edwards (1968) postulated that recombination 
rates differ between young and aged oocytes. They proposed 
that oocytes that are matured and ovulated late in the reproduc-
tive period (aged oocytes) are derived from oogonia and oocytes 
that initiate meiosis late in the foetal ovary and are recombination 
deficient. Provided they become recruited in the order they are 
formed (according to a “production line”), these “delayed” and aged 
oocytes would possess high numbers of univalents which may 
randomly segregate. This “production line hypothesis” has been 
tested by analysis of recombination frequency of maternally- and 
paternally-derived chromosomes in children of aged mothers with 
euploid constitution. Increased rather than decreased recombination 
is characteristic for chromosomes of euploid children from aged 

mothers in a European cohort (Kong et al., 2004) suggesting that 
high recombination rates protect aged oocytes from nondisjunction 
and thereby promote survival of embryos. A recent study on a large 
number of polymorphic markers in euploid children in a Canadian 
cohort found a slight reduction in the average recombination fre-
quency of maternally- but not paternally-derived chromosomes of 
euploid children of up to 32 year old mothers but not in children 
from older women, inconsistent with the prediction by the “produc-
tion line” (Hussin et al., 2011). Therefore, even tough a production 
line may exist it is unlikely to dramatically affect exchange rates 
on chromosomes and thereby increase risks for meiotic errors in 
aged oocytes. 

Studies on aneuploidies involving the most common trisomies 
by fluorescence in situ hybridization (FISH), classical spreading 
and banding approaches as well as recent analyses of oocytes and 
polar bodies using array comparative genomic hybridization (aCGH) 
show that numerical chromosomal aberrations most frequently in-
volve chromatids and not whole chromosomes (homologs)- unlike 
expected from the trisomy data (e.g. Pellestor et al., 2004; Magli 
et al., 2012; Fragouli et al., 2011; Handyside et al., 2012; Gabriel 
et al., 2011). Chromatid type errors frequently involve multiple 
chromosomes in the aged but less likely in the younger oocytes 
(Handyside et al., 2012). On first view, these observations appear 
to contradict data from trisomy studies suggesting that mainly first 
meiotic errors give rise to numerical aberrations in the oocyte and 
embryo. However, it is conceivable that loss of chromosome cohe-
sion may play a role, such that errors in separation of chromatids 
occur at meiosis I and II and present the primary predisposing factor.

Regulation of differential loss of chromosome cohesion 
at meiosis and evidence that loss of cohesion can be 
causal to errors in chromosome segregation in aged 
oocytes

Chromosome segregation is tightly regulated in mitosis. Ana-
phase progression usually occurs only when all chromosomes 
have attached to spindle fibres at their kinetochores, specialised 
structures at centromeres containing DNA binding and centromere 
proteins (CENPs) and regulatory components. The latter sense 
attachment and tension from pulling forces by spindle microtubules 
by attachment of sister chromatid centromeres to opposite spindle 
poles (reviewed by Musacchio, 2011). At prometaphase spindle 
microtubules are metastable and there is rapid polymerisation/
depolymerisation involving microtubule associated and motor 
proteins as well as activity of depolymerases e.g. of the kinesin 
13 family of motor proteins (Ems-McClung and Walczak, 2010). At 
late prometaphase to metaphase transition dynamic microtubule 
turnover is altered and the spindle assembly checkpoint (SAC) 
becomes activated. 

The SAC represents a surveillance mechanism ensuring 
that only those cells that have properly attached chromosomes 
(unusually when they are congressed and aligned at the spindle 
equator) will go into anaphase (reviewed by Musacchio, 2011). 
The silencing of the SAC is a prerequisite to anaphase progres-
sion. By sensing unattached chromosomes that accordingly are 
often not properly aligned and are lacking tension from bi-polar 
attachments, a conformational change in a checkpoint protein 
is induced. This leads to the formation of a “mitotic checkpoint 
complex” (MCC) producing a “wait for anaphase” signal. The cur-
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rent model predicts that MCC (containing the Mad2 checkpoint 
protein in open/closed dimerized form) binds to the co-activation 
factor of the anaphase promoting factor/cyclosome (APC/C), the 
Cdc20 (cell division cycle 20) protein. This prevents activation of 
the APC/C and the targeting of substrates of the APC/C by the 
Cdc20 protein. APC/C is a ubiquitin ligase complex that mediates 
polyubiquinylation of proteins marking them for degradation by the 
proteasome. In oogenesis two co-activators of APC/C are involved 
in cell cycle progression: the APC/Ccdh1 regulates the G2-phase 
meiotic arrest and resumption of maturation, and later after GVBD 
prevents a precocious increase in the Cdc20 protein and APC/Ccdc20 
activation (reviewed by Homer, 2011). The APC/Ccdc20 recognizes 
motifs on target proteins like Cyclin B1, the regulatory subunit of 
Cdk1/CyclinB1 (also termed MPF, maturation promoting factor), 
the master regulator of M-phase and on securin (see below). 

A signal from a single unattached chromosome is sufficient to 
prevent anaphase progression in mitotically dividing cells. When 
all chromosomes are attached and there is no more conformational 
change of Mad2 checkpoint protein the latter appears to become 
transported away from centromeres along spindle fibres towards 
the spindle poles by dynein microtubule motor proteins. Therefore, 
the SAC is silenced or satisfied, and the APC/C cdc20 may become 
activated when no more MCC is produced (Musacchio, 2011). 

The securin protein is present in a complex with separase, a 
proteolytic enzyme, prior to anaphase. Separase is inactive in the 
complex with securin and by inhibitory phosphorylations by the 
MPF/Cdk1 kinase. In case APC/Ccdc20 becomes activated, it trig-
gers securin degradation, and causes the release and activation 
of separase. In turn, the proteolytic separase can cleave proteins 
in the chromosome glue holding sister centromeres together 
at M-phase of mitotic division (cohesin complex), such that the 
chromatids can separate from each other (reviewed by Vogt et al., 
2008). The cohesin complex contains highly conserved proteins 
of the structural maintenance of chromosomes (SMC) family that 
are believed to embrace the chromatids like a ring or a clamp 
(reviewed by Nasmyth, 2011). Closure of the clamp is by binding 
to conserved proteins of the kleisin family of proteins like Scc1 in 
mitosis and accessory proteins (Sa1/Sa2). Loading and stabiliza-
tion of the cohesin complex involve different accessory factors 
and posttranslational modifications while opening in M-phase to 
anaphase transition occurs by proteolytic cleavage of the kleisin 
component (in mitosis Scc1, in meiosis phosphorylated Rec8). 
Some cohesin proteins are expressed in all dividing cells while 
others are mitosis or meiosis-specific and their unique roles are 
not yet fully understood (reviewed by Nasmyth, 2011).

In mitosis cohesion on chromosome arms is initially present all 
along the chromatid arms and centromeres. Cohesion becomes 
lost along the sister chromatid arms at late prometaphase by non-
proteolytic events involving protein phosphorylation of a mitotic 
cohesin protein. Cohesion at centromeres is retained involving 
activity of proteins like shugoshin (the Japanese name for “guard-
ian spirit”), Aurora kinase B and phosphatase PP2A that prevent 
critical protein phosphorylation of the kleisin cohesins (Ishiguro et 
al., 2010; Tanno et al., 2010). Cohesion at centromeres is only lost 
after the SAC is satisfied, and no more MCC is produced. APC/
Ccdc20 becomes activated, and the separase is released from securin 
protein after securin’s APC/C induced proteolytic degradation. In 
a next step, active separase can cleave the cohesin Scc1 protein 
in the cohesin complex in mitosis. Upon this, the ring-like complex 

of cohesin proteins opens and releases the two centromeres of 
the sister chromatids to separate from each other at anaphase.

In contrast to mitosis, meiotic division comprises two consecutive 
M-phases without intervening S-phase and control over anaphase 
I and II progression is much more complex (Fig. 2). A reductional 
separation of homologs at anaphase I results in separation of the 
two homologs each of which consists of two sister chromatids. This 
is followed by an equational separation of chromatids attached 
to opposite spindle poles (amphitelic) (Fig. 2) at anaphase II that 
resembles mitotic chromosome separation. The cohesin complexes 
mediating physical attachment between sister chromatids are re-
cruited in S-phase of meiotic division (indicated by open clamps 
in left part of Fig. 1). Recruitment of cohesins already occurs in 
the foetal ovary in oogenesis, when primary oocytes undergo 
S-phase. Accordingly, when recombination occurs between the 
two chromatids of the parental homologs, the exchanges and 
the cohesion between sister chromatids in individual homologs 
physically connect the two homologous chromosomes within the 
bivalent up to metaphase II (Fig. 1). Importantly, cohesion has to 
be maintained from prophase I in the primary oocyte of the foetal 
ovary throughout meiotic arrest, in humans for decades, until oo-
cytes resume meiosis and undergo meiotic divisions. 

Unlike in mitosis, sister chromatid arm cohesion persists until 
anaphase I when activation of the APC/Ccdc20 induces securin 
degradation, and separase activation (Fig. 2). Separase recog-
nises a meiotic kleisin cohesin protein, Rec8 but only when Rec8 
is phosphorylated (indicated by P in Fig. 2). This is at the sister 
chromatid arms in meiosis I. Cleavage by separase causes loss of 
arm cohesion and thereby chiasma resolution. The Rec8 protein 
at sister centromeres remains intact and centromeres attached 
since phosphorylation of Rec8 is prevented by the activity of shu-
goshins and phosphatase PP2A. Shugoshins appear necessary 
to bind and retain PP2A at centromeres in oogenesis and prevent 
precocious chromatid separation in mouse and human oocytes 
(e.g. Ishiguro et al., 2010; Garcia-Cruiz et al., 2010). The targeting 
of shugoshin itself that is necessary to recruit PP2A to the centro-
meres is involving Aurora kinase B and causes also recruitment 
of mitotic centromere associated kinase (MCAK) to centromeres, 
which is a depolymerase resolving improper microtubule attach-
ments (Tanno et al., 2010).

In case arm cohesion between sister chromatids is lost pre-
cociously prior to anaphase I chiasmata are resolved untimely. 
Homologs then behave as functional univalents (Fig. 3B). These 
are at risk to attach randomly to one spindle pole (Fig. 3B) or 
improperly to opposite spindle poles (see below, Fig. 3 C,D) and 
predispose oocytes to aneuploidy (Kouznetsova et al., 2010). 
Presence of univalents in male meiosis leads to meiotic arrest 
while a single or several univalents do not cause a block in oocyte 
maturation, as for instance shown in monosomy X oocytes in the 
mouse (LeMaireAdkins et al., 1997) or in mouse oocytes deficient 
in a recombination enzyme (in Mlh1 knockout females; Nagaoka et 
al., 2012). The unique insensitivity of oogenesis to the presence of 
univalents can be explained by the unique behaviour of centromeres 
of sister chromatids in the univalents. Frequently centromeres of 
sister chromatids attach to opposite (amphitelic) instead of only 
one spindle pole (syntelic) as should occur in first meiosis (Fig. 
3 C,D) (Kuznetsova et al., 2010). Accordingly, sister chromatids 
segregate equationally instead of reductionally at anaphase I of 
first meiotic division. The attachment to opposite spindle poles 
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presumably contributes to the permissive checkpoint control as 
the SAC does not appear to monitor tension but rather centromere 
attachment in female meiosis (Gui and Homer, 2012; Kolano et 
al., 2012; Lane et al., 2012; Sebestova et al., 2012).

When cohesion between sister centromeres is not only lost 
precociously at chromosome arms but also at centromeres (Fig. 
3I), random segregation of the sister chromatids may occur at 
anaphase I, such that single or several chromatids become dis-
tributed to the first polar body or remain in the oocyte. In case, 
loss of cohesion is delayed this may induce chromosome lagging 
on the spindle, and random segregation of bivalents to oocyte or 
first polar body (true ‚nondisjunction’). The mode of behaviour of 
meiotic chromosomes with and without cohesion is schematically 
depicted in Fig. 3, demonstrating that loss of cohesion can cause 
errors and random segregation of homologs or chromatids. In 
normal meiotic divisions, the cohesion of centromeres of sister 
chromatids in meiosis II facilitates bi-polar attachment, similar to 
mitosis (Fig. 3H). Upon fertilization, phosporylated Rec8 at centro-
meres is recognized by separase, and becomes cleaved (Fig. 2). 
In this way physical attachment between sister chromatids is lost 
such that they can separate at anaphase II (reviewed by Vogt et 
al., 2008). Accordingly in normal meiosis the first polar body should 
contain homologs with two sister chromatids and the second polar 

body chromatids (Fig. 2).
In metaphase II arrested oocytes the SAC is satisfied. Some 

APC/Ccdc20 is activated and transient cyclin B1 degradation occurs. 
Cyclin B1 can be replaced from cytoplasmic stores requiring protein 
synthesis. A block in translation of metaphase II arrested oocytes 
or extended oocyte postovulaory ageing can thus induce transient 
loss of cohesion between sister chromatid centromeres (Sowarto 
et al., 1995; Mailhes et al., 1998). However, usually oocytes re-
main meiotically arrested because the full activation of the APC/
Ccdc20 is prevented by binding of its Cdc20 co-activator to EMI2 
(early mitotic inhibitor 2) protein. The rise in intracellular calcium 
by fertilization activates a calcium-dependent calmodulin kinase 
II. The latter triggers phosphorylation of EMI2 and its degradation 
such that APC/C cdc20 becomes activated, and induces polyubiqui-
nylation and degradation of cyclin B 1 and securin (Fig. 2). The 
calcium-calmodulin dependent kinase II also causes activation of 
Wee1B, a kinase that puts an inhibitory phosphorylation on Cdk1 
thereby inactivating MPF. This contributes to rapid inactivation 
of the Cdk1(Oh et al., 2011). Active separase can recognize and 
proteolytically cleave the phosphorylated Rec8 at the sister cen-
tromeres such that chromatids can disjoin and become segregated 
to the oocyte and the second polar body. 

Several recent reports from experimental models, mainly in ro-

Fig. 3.  Attachment and orientation of chromosomes at meiosis I and meiosis II, and recognition by the spindle assembly check-point (SAC). 
Normal meiosis I with syntel attachment of homologs (A) and normal meiosis II with amphitel attachment of sister chromatids (H); random attachment 
of achiasmatic, univalent chromosomes to one spindle pole (B); loss of cohesion resulting in bi-polar attachment and precocious separation of sister 
chromatids at anaphase I (C,D); failures in proper chromosome attachment resulting in meiotic errors when they are not recognized by the SAC or 
corrected by depolymerase activities in time prior to anaphase I (E-G); random attachment of sister chromatids to same spindle pole after precocious 
loss of cohesion at centromeres (I). For further explanation, see text.
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dent, suggest that precocious loss of cohesion may be one primary 
cause of predisposition to errors in chromosome segregation of 
aged oocytes. In mice lacking a meiotic cohesin protein, Smc1b, 
recombination is disturbed, and there is an overall increase in 
univalents and bivalents with unusual exchange patterns and 
aneuploidy (Hodges et al., 2005). Aneuploidy rises also earlier 
compared to controls when females age (Hodges et al., 2005). Aged 
oocytes of some strains of mice produce not only more aneuploid 
oocytes compared to younger females but are also characterised 
by depleted cohesin and shugoshin protein at centromeres in their 
aged oocytes (Lister et al., 2010). Loss of attachment at sister 
centromeres appears especially high when aged mouse oocytes 
are from stimulated cycles and/or matured in vitro to metaphase 
II (Chiang et al., 2010; Lister et al., 2010; Merriman et al., 2012). 
Knockdown of Rec8 expression in oocytes of the growing follicle 
pool does not induce loss of chromosome cohesion suggesting de 
novo translation past dictyate arrest is not necessary to maintain 
cohesion in oocytes (Revenkova et al., 2010). However, depletion 
of younger mouse oocytes of the Rec8 cohesin protein by targeted 
proteolysis causes loss of chromosome cohesion. The rises in 
aneuploidy cannot be compensated/reversed by overexpression 
of a functional non-cleavable human Rec8 protein prior to and at 
meiotic maturation (Tachibana-Konwalski et al., 2010). Therefore, 
it appears that losses of cohesion cannot be replaced past early 
prophase I and are relevant for ageing in oocytes. 

It is feasible that under physiological conditions gradual loss 
of cohesin takes place during the long meiotic arrest period. 
Accordingly, hyperactive separase induces faster resolution of 
chromosome cohesion in aged compared to young oocytes in 
an experimental mouse model (Chiang et al., 2011). In humans 
meiotic arrest is much longer compared to most animals like the 
mouse which could explain some species-specific differences in 
susceptibility to meiotic errors and also the high susceptibility of 
shorter chromosomes. Loss of cohesion might be due to hydro-
lysis, transient low activity of separase, or by an imbalance of 
factors stabilizing or releasing cohesion. Histone deacetylase has 
been implicated in deacetylation of a cohesin protein, Smc3, that 
can induce cohesin dissociation (for review see Nasmyth, 2011). 
Whether acetyl transferases or deacetylates contribute to loss of 
cohesion in aged oocytes is currently unknown.

Since there is also evidence from the mouse model that hormonal 
stimulation can affect cohesion between sister chromatid centro-
meres (Merriman et al., 2012), it remains to be determined whether 
it is mainly chronological age or also unfavourable microenviron-
ment at oocyte growth and maturation, in spontaneous or stimu-
lated cycles, or exposures and intrinsic degenerative processes 
throughout reproductive life that influence loss of chromosome 
cohesion in human oocytes. Culture conditions during resumption 
of maturation in vitro in cumulus denuded mouse oocytes causes 
precocious loss of cohesion at sister centromeres prior to meta-
phase II (Cukurcam et al., 2007). It thereby predisposes to second 
meiotic errors. Presence of cumulus providing metabolites from 
glycolysis and follicular fluid meiosis activating sterol (FF-MAS), 
a sterol intermediate in the cholesterol biosynthetic pathway pro-
duced within the follicle in vivo reduced or prevented the incidence 
of precocious chromatid segregation prior to anaphase II in this 
model (Cukurcam et al., 2007). Although human oocytes matured 
with FF-MAS did not have reduced aneuploidy rates compared to 
in vivo ovulated ones, FF-MAS might have protected oocytes from 

errors in chromosome segregation induced by the in vitro matu-
ration conditions (Smitz et al., 2007). From these observations it 
appears that multiple factors may influence fidelity of chromosome 
segregation in young or aged oocytes. For instance, maternal age 
and hormonal stimulation increased the distance between sister 
centromeres in metaphase II arrested mouse oocytes synergisti-
cally (Merriman et al., 2012).

So far there is no conclusive evidence that aged human oocytes 
possess reduced cohesion protein (Garcia-Cruiz et al., 2011). How-
ever one report showed univalent 16 chromosomes in aged human 
oocytes (Angell, 1997). Since chromosome 16 contains usually at 
least one chiasma this observation supports the concept of loss of 
cohesion as major source of errors in chromosome segregation. 
The inter-kinetochore distance was also increased in aged, in vitro 
matured human oocytes compared to the distance in oocytes of 
younger patients, indicating gradual loss of cohesion or some other 
epigenetic alteration in the chromatin at centromeres (Duncan 
et al., 2012). Since there is no evidence that rates of aneuploidy 
increase in aged pig oocytes (Hornak et al., 2011), further studies 
on the role of the genetic background and the relative importance 
and ubiquitous loss of cohesion in aged oocytes are required. 

Unusal spindles, and synergistic roles of altered ex-
pression patterns, permissive SAC and organelle dys-
function in errors in chromosome segregation in aged 
mammalian oocytes 

Oocytes possess unusual spindles as multiple microtubule or-
ganizing centres (MTOCs) are present in ooplasm while centrioles 
disappear early in oogenesis. In mitosis of animal cells there is 
therefore an intrinsic bi-polarity established by replication of cen-
trioles/centrosomes surrounded by pericentriolar material prior to 
M-phase. Disturbances in synchrony of replication of centrosomes 
in mitosis as for instance observed in cancer progression can 
contribute to high susceptibility to mitotic errors and chromosomal 
instability (CIN) (Thompson et al., 2010). In oocytes resuming 
maturation the multiple MTOCs form asters of microtubules all 
over the ooplasm. Upon germinal vesicle breakdown, microtubules 
from asters contact chromosome arms or interact with each other. 
Most MTOCs translocate to the centre of the cell forming a ball 
of microtubules in mouse oocytes. On the surface of this ball, 
bivalents align with arms of chromosomes parallel to the surface 
of the microtubular assemblies and not under tension from attach-
ment of centromeres to microtubules (Kitajima et al., 2011). This 
stage is termed “circular bivalent” characterised by attachment 
of chromosome arms rather than centromeres to microtubules. 
Recent high resolution confocal microscopy of the behaviour of 
chromosomes and spindle formation in maturing mouse oocytes 
have shown that in a next prophase I stage the central microtubule 
ball rearranges to form a short bipolar spindle with very broad poles 
(Kitajima et al., 2011; Courtois et al., 2012). On this assembly the 
bivalents translocate to the outer middle, forming a hollow ring, a 
so-called “pre-prophase belt”. Bivalents are connected by paral-
lel attachments to the chromosome arms rather than attached 
kinetochores. Subsequently centromere attachment occurs, visible 
not only by microtubule tracing but also by chromosome stretch-
ing and initiation of bi-polar attachment of homologs in bivalents. 
During prometaphase I bivalents invade the spindle and oscillate 
between spindle poles, reorient and only finally align at the equator 
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(chromosome congression). The initial attachment of centromeres 
to polar microtubules appears extremely error prone during this 
period. High resolution confocal microscopy suggests that individual 
centromeres re-attach to microtubules, the latter become de- and 
repolymerised and mono-or bipolarly attached such that about 90% 
of all chromosomes undergo one or more rounds of error correc-
tion on average in the mouse (Kitajima et al., 2011). Furthermore, 
centromeres of sister chromatids frequently attach to opposite 
spindle poles (amphitelic) instead of one spindle pole (syntelic) 
(Fig. 3 C,D,F), or one centromere becomes associated with spindle 
microtubules to both spindle poles (termed merotelic attachment) 
(Fig. 3G). If such irregular attachments are not resolved in time and 
remain unrecognized by the SAC, risks for chromosome lagging 
or separation of chromatids instead of homologs are increased. 
The correction of improper attachments involves microtubule 
depolymerases like Kif 2b and Kif2c (also termed mitosis centro-
mere associated kinesin, MCAK) and complex regulatory events 
that are controlling localisation and activity of the depolymerases, 
and thus microtubule turnover (reviewed by Eichenlaub-Ritter et 
al., 2010). Resolution of improper attachment aids chromosome 
congression at the equator and proper attachment and separation 
of chromosomes. It was only recently demonstrated that the SAC 
does not detect unaligned chromosomes in mammalian oocytes 
as long as chromosomes are attached to spindle fibres (Gui and 
Homer, 2012; Sebestova et al., 2012; Kolano et al., 2012). This 
makes oocytes uniquely susceptible to errors when amphitelic or 
merotelic and improper attachments persist to late metaphase I 
and into anaphase I. 

The oocyte contains all elements for bipolar spindle assembly, 
even in absence of chromatin (Brunet et al., 1998). Depolymerisa-
tion of the spindle and even slight disturbances in polymerisation 
dynamics for instance by exposure of oocytes to low concentration 
of depolymerising drugs trigger meiotic arrest or delay when they 
occur in late prometaphase I and metaphase I stage once chromo-
somes become attached to the spindle by kinetochore fibres. The 
knockdown of SAC components causes precocious anaphase I 
progression showing that a SAC is functional in oocytes (reviewed 
by Homer et al., 2011). However, it is conceivable that the large size 
of the oocyte and the comparatively small spindle might contribute 
to relaxed SAC signalling. A critical mass of unattached chromo-
somes may be necessary to elicit signals preventing release from 
the SAC (Hoffmann et al., 2011). Furthermore, in cases where 
resolution of improper microtubule attachment is inefficient this 
is not sensed by the SAC since the SAC only recognizes attach-
ment rather than position. Congression failure of chromosomes 
is thus much more frequent in aged compared to young oocytes 
(e.g. Battaglia et al., 1996) and is an indicator that controls may 
have been lost mediating proper centromere attachment and 
alignment of chromosomes. Furthermore, loss of steric constrains 
by deficiencies in the organization of centromeres may facilitate 
merotelic attachments. In fact, posttranslational modification of 
histones appeared altered in aged human metaphase II oocytes 
(Van den Berg et al., 2012) suggesting that epigenetic alterations 
of pericentromeric chromatin may be common. 

Relevance of altered expression in aged oocytes

Since aneuploidy is low in oocytes of young females of most 
mammals, controls over chromosome segregation do not appear 

generally compromised. However, analysis of the transcriptome of 
aged metaphase II oocytes of mice and human detected consis-
tent differences in transcript levels of genes involved in the SAC 
(e.g. Mad2, Bub1 and Msp1), the spindle, cell cycle control and in 
metabolism, particularly in mitochondrial function (Hamatani et al., 
2004; Pan et al., 2007; Steuerwald et al., 2007; Grondahl et al., 
2010). Although the alterations affected individual mRNAs differ-
ently, common pathways are involved that likely contribute to loss 
of control. For instance, some cell cycle components like TAp73, a 
member of the family of the p53 tumour suppressor protein family 
that declines with age in human oocytes (Steuerwald et al., 2007) 
is required for localisation of a SAC component. Alterations in its 
expression in aged oocytes (Hamatani et al., 2004; Grondahl et 
al., 2010; Guglielmino et al., 2012) can therefore also indirectly 
contribute to permissive SAC. Although it is still unknown to which 
extent altered transcript levels reflect altered proteome and enzyme 
activities or disturb regulation of the cytoskeleton and chromosome 
behaviour, under- or overexpression of individual SAC and spindle 
proteins might not cause a dramatic rise in errors in chromosome 
segregation, while the synergistic losses or gains and reduced 
availability of high energy substrates are much more likely to 
contribute to increased risks for meiotic errors in aged oocytes, 
particularly, when they contain susceptible chromosomes and such 
with reduced cohesion. 

Expression in oogenesis is tightly and uniquely regulated. 
Oocytes are extremely large cells in the human body and have to 
supply the early embryo with transcripts, and protein to support 
development until zygotic gene activation- in humans at the 4-8 
cell stage. Therefore, early embryogenesis relies on maternal 
gene products including ribosomes, tRNAs, mRNAs and microR-
NAs required for differential regulation of expression as well as 
proteins, membranes and cell organelles such as mitochondria, 
endoplasmic reticulum, and cortical granules (reviewed by Zuccotti 
et al., 2011). Studies in the mouse have shown that transcription 
increases dramatically when oocytes initiate the growth phase 
while fully grown, maturation and developmentally competent 
oocytes become transcriptonally silenced. Chromatin attains a so 
called “surrounded nucleolus” (SN) configuration within the GV of 
competent oocytes of most mammals including the human. When 
GV stage oocytes of mouse with a SN nuclear morphology are 
isolated from antral follicles past the time they are ready to resume 
maturation (preovulatory overmaturity) and are matured in vitro to 
metaphase II, they show increased aneuploidy compared to controls 
isolated from follicles at the appropriate time after stimulation of 
follicular development (unaged cohort) (Zuccotti et al., 1998). This 
suggests that prolonged transcriptional suppression and events 
prior to resumption of maturation may interfere with scheduled 
gene expression patterns, spindle formation and chromosome 
behaviour at maturation thus leading to meiotic errors. 

Two independent studies using different sources and methods 
showed both significant differences in transcript abundance between 
oocytes from younger (<32 years and < 32 years) compared to 
aged (>40 years and 37-39 years; respectively) women (Steuer-
wald et al.,2007; Grondahl et al., 2010). Age-related changes were 
prominent in the expression of genes involved in regulation and 
control of the cell-cycle, DNA damage response and repair, energy 
pathways, cytoskeletal structure and transcription. Transcripts in 
checkpoint control like Mad2, Bub1B and Bub3 were downregulated 
in aged mouse oocytes (Pan et al., 2007), as were transcripts in 
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chromosome attachment and spindle regulation like MCAK and 
BRCA2. Knockdown or targeted knockout of these genes caused 
chromosome congression failure, spindle aberrations and aneu-
ploidy (Pan et al., 2007). Interestingly, overall mRNA content ap-
peared increased rather than decreased in aged human oocytes, 
and transcipts involved in the mitochondrial electron transport chain 
were more abundant. By contrast, those genes/transcripts related 
to ATP binding, oxidoreductase and the mitochondrial membrane 
appeared instead down-regulated in the oocytes from older women 
(Steuerwald et al., 2007). This could be a result of increased ROS, 
dysfunctional mitochondria and failures to stage-specifically recruit 
or degrade messages. 

Stimulation, environment during oocyte growth and 
maturation, and damage by ROS and AGEs may con-
tribute to oocyte ageing and modulate susceptibility to 
meiotic errors

Control of spindle formation, chromosome congression, chromo-
some separation, translation, intracellular signalling, and calcium 
homeostasis require availability of high energy substrates like ATP 
(reviewed by Eichenlaub-Ritter et al., 2011). During the growth 
phase somatic cell contacts contribute to the spatial organiza-
tion and function of the meiotic spindle through actin-dependent 
mechanisms (e.g. Barrett and Albertini, 2010). Oocytes govern 
gene expression in the follicle by secreting growth factors which 
signal to the somatic compartment and direct metabolic activi-
ties. In turn, the cumulus supplies oocytes with metabolites like 
amino acids, lactate and pyruvate that are essential for maintain-
ing mitochondrial activities, ATP production, and ion- and redox 
homeostasis in the oocyte (reviewed by Su et al., 2009). Oocytes 
contain large numbers of mitochondria but activity of mitochondria 
in meiotically arrested oocytes is comparatively low such that risks 
for oxidative damage by ROS are mimimal. Oocyte mitochondria 
contain few cristae, dense matrix and low inner membrane potential 
(reviewed by Eichenlaub-Ritter et al., 2010). Upon resumption of 
maturation a cortical domain of mitochondria with increased inner 
membrane potential is established upon loss of physical contacts 
between oocyte and cumulus. In vitro maturation of mouse oo-
cytes is accompanied by stage-specific changes in distribution of 
mitochondria and bursts in ATP production (Yu et al., 2010). Loss 
of contacts via transzonal projection causes transient increases 
in inner membrane potential thus posing a risk for an untimely 
increased generation of ROS (e.g. Trapphoff et al., 2011). The 
accumulation of advanced glycation end products (AGEs) from 
reactive metabolites, e.g. from glycolysis, has been made respon-
sible for age-related damage to mitochondria and membranes, 
increases in DNA breaks and adduct formation and senescence in 
many tissues (for references ses Tatone et al., 2011). Detoxifying 
enzymes appear less expressed in cumulus of aged compared to 
young mice, and exposures of mouse oocytes to methylglyoxal, 
one such reactive metabolite produced during glycolysis during 
in vitro maturation caused spindle aberrations and disturbances 
in chromosome congression in young mouse oocytes (Tatone et 
al., 2011). Exposure to low concentrations of methylglyoxal also 
interfered with the stage-specific accumulation of mitochondria 
in the vicinity of the spindle and affected the inner mitochondrial 
redox potential. Taken together with observations that obesity and 
diabetes increase spindle aberrations in young oocytes in mouse 

models (Wang et al., 2009), and that mice fed with moderately 
caloric restricted diet exhibit improved quality of aged oocytes and 
low aneuploidy rates (Selesniemi et al., 2010), all data point to a 
contributing role of alterations in follicular and oocyte metabolism 
and dysfunctional organelles in spindle aberrations and susceptibility 
to meiotic errors. In addition, mitochondria in aged human oocytes 
in resting primordial follicles and in follicle cells from stimulated 
cycles in ART are structurally and functionally altered (reviewed 
by Eichenlaub-Ritter et al., 2010). Depending on whether and to 
what extend such age-related alterations contribute to changes in 
follicular homeostasis, metabolism, altered expression patterns and 
loss of chromosome cohesion, it may become possible to prevent 
or delay these ageing events, e.g. by healthy life style (anti-oxidants 
in food, exercise, low fat diets etc.) or appropriate stimulation and 
handling in ART. In fact, there is evidence that milder stimulation 
decreases aneuploidy in human oocytes irrespective of maternal 
age (Baart et al., 2007). Whether high numbers of chromatids in 
aged human oocytes from stimulated cycles are originating from 
primary lesions like loss of cohesion due to age or are also partly 
related to sub-optimal intrafollicular environment in response to 
stimulation protocols, needs to be further investigated. 

Outlook

In case the loss of chromosome cohesion, organelle dysfunction, 
and altered gene expression are inevitable events associated with 
oocyte ageing and the long meiotic arrest the possibility to improve 
aged oocyte quality may be restricted. However, when metabolism 
and follicular quality are influencing the status of chromatid cohesion, 
gene expression patterns, and spindle and cell cycle control, it may 
become feasible to delay oocyte ageing and reduce susceptibility 
to meiotic errors by preventive treatment and a healthy life style. 
With the advent of efficient and safe cryopreservation/vitrification 
protocols social freezing of young oocytes may become an op-
tion to prevent ageing, retain fertility and extend the reproductive 
period for women who want to postpone family-planning to more 
advanced ages. Research to generate oocytes from ovarian 
stem cells is promising to obtain more information on the basic 
cell biology of oogenesis and mechanisms behind oocyte ageing 
and eventually develop methods to preserve fertility to advanced 
ages. Currently, it appears imperative to raise awareness in young 
women and public of the still uncurable decay of oocyte quality and 
the risks for errors in chromosome segregation, associated with 
depletion of the follicle pool and the naturally limited reproductive 
period in humans. 
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