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ABSTRACT  Bioinformatics tools have been recently applied to study the differentiation of the mam-
malian oocyte during folliculogenesis. In this review, we will summarize our knowledge of 1) the 
use of biological databases for the extraction of relevant information, 2) bioinformatics methods 
for knowledge extraction and representation, 3) the application of these methods to the study of 
mammalian oocyte differentiation and 4) state-of the-art prediction approaches for the assessment 
and estimation of the cell differentiation status.
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Introduction

Change is the main theme that describes developmental and 
differentiation processes. For example, beyond the morphological 
modifications that occur during the development of the mammalian 
zygote into a blastocyst or the in vitro differentiation of embryonic 
stem cells (ESCs) into cardiomyocytes, a multitude of changes 
occur in the molecular backstage. Networks of genes are switched 
on and off, are down- or up-regulated along pathways that for many 
of these processes still remain unknown.

One of these yet unexplored developmental processes is the 
differentiation of the mammalian oocyte during folliculogenesis. 
Although the paucity of this biological material has made high 
throughput studies difficult to perform, appropriate bioinformatics 
tools have now been made available to bring to light the underlying 
molecular changes and to provide us predictive models for the cell 
differentiation status.

In this review we will present our knowledge on 1) the utility of 
biological databases for the extraction of relevant information, 2) 
bioinformatics methods and tools for knowledge representation, 
3) applications of these methods to the study of the mammalian 
oocyte differentiation, and 4) state-of the-art prediction approaches 
for assessing the differentiation stage of cells.
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Knowledge bases for bioinformatics analysis

Biological function and pathway databases
One of the most important goals in systems biology is the 

identification of the functions of genes and their relationships. 
To this regard, genes are often profiled through their expression 
measured under different environmental or experimental condi-
tions and those with similar transcriptional profiles are likely to 
participate in common processes or share common functions. 
Bringing to light the relationships among transcriptional products 
requires prior knowledge on gene function for at least a subset 
of similarly profiled genes. A primary source for such annotation 
is Gene Ontology (GO) (Ashburner et al., 2000), a controlled vo-
cabulary for describing the role of genes and gene products in a 
number of organisms. At the highest level, GO consists of three 
ontologies that describe gene products in terms of their associated 
biological processes, cellular components and molecular func-
tions in a species-independent manner. A gene product might be 
located in one or more cellular components; it is active in one or 
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more biological processes, during which it performs one or more 
molecular functions.

Besides organizing a vocabulary of terms into an ontology, 
GO provides annotation data by assigning the vocabulary terms 
to genes and their products. Tools like DAVID (Database for An-
notation, Visualization and Integrated Discovery, http://david.abcc.
ncifcrf.gov/) are available to find all the processes and functions 
in which genes of interest are known to be involved (Huang et al., 
2009b). GO can be useful also for the comparison between genes 
of different organisms and for studying new genomes. The con-
trolled vocabularies are structured so that they can be queried at 
different levels: a user may exploit the GO to search for a specific 
gene or to find a particular process and explore its hierarchy of 
terms, as shown in Fig. 1.

Another source of functional annotations are pathway reposito-
ries. Pathways often provide a rich representation of the molecular 
mechanisms that are at the basis of biological functions. They 
may be represented as graphs with directional flow that summa-
rize the current knowledge on how biomolecules work together. 
KEGG (Kyoto Encyclopedia of Genes and Genomes, http://www.
genome.jp/kegg) for example, is a collection of databases con-
taining organism-specific networks of molecular interactions in 
the cells (Kanehisa et al., 2012). The aim of KEGG repository 
is to link lower-level information (e.g. genes, proteins, enzymes, 
reaction molecules, etc.) with higher-level information (e.g. inter-
actions, enzymatic reactions, pathways, etc.). Another repository 
with annotated pathways and reactions is Reactome (http://www.
reactome.org/ReactomeGWT/entrypoint.html), a comprehensive 

and integrated source of information about human biological pro-
cesses (Matthews et al., 2009). The Reactome web portal provides 
a collection of tools that allow researchers to browse and visual-
ize pathway models, and to carry out pathway-based analyses of 
complex experimental and computational data sets.

Pathways, together with other functional and textual annotations, 
are exploited to infer molecular interactions and, as such, rendered 
in emerging Protein-Protein Interaction (PPI) databases. Among 
them, the Biomolecular Interaction Network Database (BIND, 
http://metadatabase.org/wiki/BIND_-_Biomolecular_Interaction_
Network_Database) collects hypothesized interactions between 
two or more biological entities (e.g., DNA, molecular complexes) 
(Bader et al., 2003). Another resource is the Molecular INTeraction 
database (MINT, http://mint.bio.uniroma2.it/mint/Welcome.do), 
which contains information about interactions obtained from 
work published in peer-reviewed journals, excluding genetic or 
computationally inferred interactions from the database (Licata 
et al., 2012).

Literature databases
Very useful resources for automated exploration and inference 

of biomedical relations are literature repositories. Perhaps the most 
widely used is Entrez by National Library of Medicine, that also 
aims at integrating other types of information from the databases 
maintained by National Center for Biotechnology. These databases 
include nucleotide sequences, protein sequences, macromolecu-
lar structures, genomes and MEDLINE articles. Access to these 
resources is granted through the web-based interface of PubMed 
and through Entrez application program interfaces. Besides 
containing links to full text articles, PubMed also provides links 
to many other databases such as Nucleotide, Protein, Structure, 
Taxonomy, Genome, Expression, and Chemical Databases. Entries 
in these databases are often linked to terms in several ontologies. 
PubMed citations, for example, have been assigned MeSH terms 
and publication types from the Medical Subject Headings (MeSH; 
http://www.ncbi.nlm.nih.gov/mesh). MeSH is a controlled vocabu-
lary thesaurus crafted by the National Library of Medicine and is 
used for indexing, cataloguing, and searching for biomedical and 
health-related information and documents. It consists of sets of 
terms organized in a hierarchical structure that permits search-
ing at various levels of specificity. MeSH refers to the domain of 
medicine and includes different kinds of concepts that indicate the 
subject of an indexed article.

Articles present in the MEDLINE database are annotated with 
MeSH terms by expert curators, who summarize the presented 
information and the described genes. This tight association with 
the MEDLINE database, in addition to the hierarchical structure, 
is what makes MeSH vocabulary a very useful tool for searching 
and indexing journal citations and other data. Being structured and 
organized in hierarchical trees, MeSH terms can be very useful 
to identify relevant genes in the field of interest on the basis of 
the available literature. An example of this annotation is shown in 
Fig. 2, where the genes annotated to oocytes-related MeSH terms 
are used to assess a measure of the similarity among the terms. 
More complex approaches, that will be discussed in the following 
section, deal with both functional and textual annotation of genes.

Data repositories
Researchers are increasingly encouraged by scientific journals 

Fig. 1. Hierarchy of oogenesis-related Gene Ontology terms (http://
www.geneontology.org/). Red and blue arrows indicate “is a” and “part 
of” relations between the linked terms, respectively.
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to deposit their data on freely available community resources, 
which store them in appropriate formats for comprehensive 
analysis. For instance, Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) provided by the National Center for 
Biotechnology (NCBI), serves as a public repository for a wide 
range of high-throughput experimental data, including single and 
dual channel microarray-based experiments measuring mRNA 
and protein abundance, as well as non-array techniques, such as 
mass spectrometry peptide profiling and various types of quantita-
tive sequence data (Edgar et al., 2002). Currently, GEO contains 
about 10000 experiments provided by 5000 different research 
groups, and it includes a pipeline for data analysis, named GEOR.

Another well-known database of functional genomics experi-
ments, including gene expression, is ArrayExpress, provided by 
the European Bioinformatics Units (Parkinson et al., 2009). Data 
stored in ArrayExpress can be analyzed through a web-based 

application named Gene Expression Atlas (http://www.ebi.ac.uk/
gxa). This tool relies on a subset of re-annotated data, which can 
be queried for gene expressions under a specific biological condi-
tion and across sets of experiments.

One utility of data repositories is comparative analysis of experi-
ments. For instance, a researcher interested in the transcriptomic 
signature of the developmental competence of oocytes may com-
pare his experimental results to results from other available data 
sets on the same process. Once such data have been selected 
from GEO or ArrayExpress, these resources enable the application 
of bioinformatics analysis on the raw gene expression data (Fig. 3).

Methods for knowledge extraction and representation

Enrichment analysis
One of the initial steps of any bioinformatics analysis is often 

related to the inspection of a subset of interesting genes (or gene 
list) in order to extract any available information about the functions 
and pathways such genes are involved into. Besides considering 
each gene as a single entity, it is also important to understand 
which are the biological functions that are enriched in a set of 
candidate genes.

The annotation enrichment is a procedure for statistical analy-
sis of biological annotations that are over-represented (enriched) 
in a candidate subset and that are thus indicative of a particular 
experiment or phenotype (Huang et al., 2009a). An annotation 
term is significantly over-represented if the probability of finding by 
chance the same or a higher number of genes associated to that 
term is low. The significance of a term depends on the proportion 
of genes annotated to it in the list of interest and on the number 
of genes belonging to a specific genome and associated to that 
term. The hypergeometric or the binomial probability distributions 
are commonly used to determine the significantly enriched terms 
and their biological functions.

While these strategies require a fixed subset of candidate 
genes, a more complex and popular approach is the Gene Set 
Enrichment Analysis (GSEA, http://www.broadinstitute.org/gsea/
index.jsp). GSEA eliminates the need to impose specific thresholds 
for gene subset selection by proposing an approach based on the 

Fig. 2. Literature-based gene expression analysis. Medical subject heading (MeSH) terms and their annotated genes are used to create a network 
of keywords where the terms that share a significant number of annotated genes are linked.

Fig. 3. Example of a pipeline for analysis of Gene Expression Omnibus 
(GEO) data from developmentally competent (‘yes’) and not competent 
(‘no’) oocytes. A heat map reflecting microarray gene expression values 
across 20 samples belonging to these two different conditions can be 
obtained with bioinformatics tools that usually provide a measure to group 
similar samples (clustering).
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scoring and ranking of genes (Subramanian et al., 2005). Gene 
scores may be computationally obtained by, for example, compar-
ing case-control transcriptions, making GSEA ideal for analysis of 
quantitative data. The genes ranked according to the selected score 
are compared to gene sets from KEGG, GO or other sources and 
enrichment is reported on the basis of computation of probability 
that the top-ranked genes belong to the target gene set.

Enrichment analysis can simplify the interpretation of large-scale 
experiments as researchers can focus on gene sets, which tend 
to be more interpretable. Thanks to these strategies, the perspec-
tive of the analysis is moved from single genes to larger groups 
of molecules that represent biological functions at a cellular level. 

Several enrichment analysis tools have become popular for the 
study of oocytes and embryos. DAVID is one of them; it integrates 
annotation terms from several sources and besides enrichment 
analysis enables the search for related genes or terms and rendering 
of genes on pathway graphs to facilitate biological interpretation.

DAVID is an example of a web application that integrates best 
statistical practices and most reliable knowledge repository in a 
fixed, predefined analytics pipeline. An alternative approach is that 
of data exploration environments, which allow users to construct 
analytics pipelines on their own. The benefits are a gain in flexibility 
and an interactive data analytics, at the expense of higher complexity 
of the user’s interface. An example of such tools is Orange (http://
orange.biolab.si/) which uses the visual programming paradigm 
to build of analytics procedures that combine data mining and 
bioinformatics components (Curk et al., 2005). An example of a 
data analysis pipeline constructed with this tool is shown in Fig. 4, 
where differentially expressed genes from a GEO experiment are 
identified and then analyzed for term enrichment in GO Browser. 
Another example of a toolbox that combines several functionalities 
for analysis is Babelomics (http://babelomics.bioinfo.cipf.es/), which 

is conceived for the analysis of transcriptomics, proteomics and 
genomics data and allows interpreting the results through different 
functional enrichment or gene set methods (Al-Shahrour et al., 
2005). Such interpretation can be performed using both functional 
annotations from GO and KEGG and regulatory information from 
PPI databases. Functional classification of genes and visualiza-
tion of the related categories is nicely supported in PANTHER 
(Protein ANalysis THrough Evolutionary Relationships, http://www.
pantherdb.org/) Classification System (Thomas et al., 2003). This 
tool takes into account the gene families, the GO classes and the 
Pathways, to assign a functional class to each gene.

The toolboxes described in this section are just some few 
examples examples of a growing set of general or dedicated 
software platforms for bioinformatics data analysis. These are 
regularly reported in special application sections of journals such 
as Bioinformatics, BMC Bioinformatics and Nucleic Acids Research.

Text mining approaches
With the increasing volume of biomedical publications, the au-

tomated analysis and mining on literature is becoming an essential 
part of biomedical data exploration pipelines. One of the most 
challenging goals is the extraction of specific embedded informa-
tion, such as associations of genes with their related diseases and 
treatments, and experiment-specific retrieval of related literature 
and its summarization.

To this end, a number of Text Mining and Natural Language 
Processing methods have been developed for the automated 
elaboration of textual content of biomedical publications (Krallinger 
et al., 2008, Weeber et al., 2005). The main efforts in this area have 
been related to the identification of biological entities (Name Entity 
Recognition) in free text. The most straightforward literature analysis 
approach for this task is the extraction of keywords and their rep-

Fig. 4. An example of microarray data analysis schema in Orange. Significantly expressed genes selected from a Gene Expression Omnibus (GEO) 
data set are analyzed with Gene Ontology (GO) enrichment. The ‘GO Browser’ enables to set the parameters of the analysis (e.g. statistical test and 
p-value thresholds) and to visualize the enriched terms and the corresponding genes within the hierarchy of GO terms. Categories of genes may be 
selected for further bioinformatics analysis.
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resentation through frequency patterns. After some pre-processing 
steps required for the text decomposition, such as lemmatization 
and stemming, words representing specific kinds of entities (e.g., 
gene names) are identified from free text. This step must deal with 
a problem of ambiguity, due to the existence of different names for 
the same entity and to abundance of acronyms and abbreviations 
in biomedical literature, which can result in a misinterpretation of 
words. For this reason, Name Entity Recognition strategies usually 
rely on other databases, such as the Entrez Gene NCBI database, 
to derive the correct names (Nuzzo et al., 2010). In a separate step, 
a set of keywords is analyzed to retrieve significant co-citation with 
the entities of interest. A crucial aspect of the analysis is about the 
type of considered keywords that may change according to the 
functional context in which an entity applies. Although every word 
from the text can be analyzed, the most common way to consider 
functional context in text mining is the introduction of structured, 
hand-curated information about biological entities. For instance, 
MeSH vocabulary assigns domains like diseases or anatomy to 
publications. Such annotations can be used to establish different 
‘lines of evidence’ for an entity relation derived from text. A certain 
disease can be assigned to a gene if the paper where the entity was 
identified had been assigned to the disease via MeSH. The level 
of association is then assigned. Here the simplest approach is to 
consider their occurrence in the text or the number of publications 
that contain the same evidence. More sophisticated methods take 
into account the position of the word in the sentence and weight 
each term according to a measure of the importance of the term for 
a particular gene. A recently proposed method associates genes 
based on the disease-related UMLS annotations extracted from 
PubMed. According to this procedure, terms about diseases or 
symptoms that are frequent in all the publications and not specifi-
cally assigned to the publications related to the considered gene 
are rated as less important (Nuzzo et al., 2010). 

An example of a software that nicely integrates data analysis and 
literature mining is Pathway Studio (http://www.ariadnegenomics.
com/products/pathway-studio/). It enables the analysis of biological 
data, including gene expression or proteomics experiments (Nikitin 
et al., 2003). The MedScan module of Pathway Studio aims at 

extracting biomedical information by using dictionaries to identify 
biological terms (e.g. pathways, proteins, etc) and extracting the 
relationships with natural language processing methods. Other 
text mining software suites specifically designed for biomedical 
data analytics are reviewed in (Lu et al., 2011).

From gene lists to association networks
While enrichment analysis and text mining are helpful in unveil-

ing the most updated information on a set of genes, they shed little 
light on the complex interacting groups of molecules that constitute 
living systems. When analyzing experimental data, we are not only 
interested into entities that are related to observed processes, but 
in their relations and networks that would reveal the underlying 
biological mechanisms.

For a number of well-studied model organisms such as budding 
yeast, it is possible to use validated PPI and highlight the associa-
tions most related to the process of interest. When considering 
highly complex species, including mouse and humans, research-
ers have to take into account other types of associations, due to 
the lack of functionally validated interactions. In gene networks, 
the concept of interaction is thus expanded as the findings from 
physical interaction experiments are combined with any poten-
tially useful assertion on associations of biomedical entities from 
available knowledge-sources. Text mining and co-occurrence in 
the publications are evaluated for this purpose and the evidence 
coming from the literature is used by popular tools such as STRING 
(Szklarczyk et al., 2011) and IPA (Ingenuity Systems, www.inge-
nuity.com) for constructing protein or gene networks. Unlike pri-
mary PPI interaction databases, STRING combines and weights 
information automatically extracted from high-throughput data, 
literature data mining, signaling and transcriptional pathways and 
organism-specific databases. STRING also automatically trans-
fers PPI-validated interactions among organisms if a orthologous 
protein pair is present in another species. Within a web interface, 
STRING can render the networks related to a selected protein, 
where each link is enhanced with the information regarding the 
source of knowledge from which the interaction was inferred (Fig. 
5). A score indicating the confidence of the predicted interaction 
is also provided, with higher values assigned when the link has 
been inferred from multiple sources.

A very popular commercial tool for exploration of biological net-
works is the software Ingenuity Pathway Analysis (IPA). It provides 
an environment for explorative analysis over biological interactions 
obtained from manually curated relationships among proteins, 
RNA, genes, metabolites, protein complexes, drugs and diseases. 
Every relation displayed can be traced back to the sources from 
where it was inferred and the software provides detailed related 
information that are manually curated and updated by experts. 
When run on a dataset, IPA Core Analysis enables the user to 
visualize and analyze the metabolic and signaling pathways, and 
to inspect cellular processes and transcription factors related to 
the genes of interest.

Applications to –omics analysis in oogenesis and early em-
bryogenesis

Recently, there has been an increasing effort in leveraging the 
available knowledge for studying developmental processes during 
oogenesis and early embryogenesis. In particular, results from 
several studies using –omics technologies, such as microarrays 

Fig. 5. Network of OCT4 interacting proteins obtained with STRING 
(http://string-db.org/).
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and mass spectrometry, have been analyzed using the bioinfor-
matics tools for annotation and association of molecules, with the 
common aim of hypothesizing unknown entities that play important 
role in cell differentiation. For instance, researchers in the field 
of oocytes differentiation may consider a subset of genes known 
as maternal-effect genes. In the analysis of data from oocytes, 
an added value is represented by the evidence that a known 
maternal-effect gene is often related to another gene that has not 
been previously considered. Such evidence can be obtained from 
gene annotations and association networks.

Most of the current works in this area focus their bioinformatics 
analysis on gene set enrichment, with particular reference to GO 
processes and KEGG pathways. In one of these studies, thanks 
to the analysis performed with DAVID, it was possible to highlight 
the major differences in terms of activated pathways between in 
vitro matured and immature bovine oocytes, thus confirming the 
transcriptional changes during oocyte growth (Mamo et al., 2011). 

The results provided insights into the metabolic pathways whose 
activation prevent the maturation of developmentally competent 
oocytes. An integrated pipeline of proteomics experiments coupled 
with GO enrichment and IPA networks was also applied to bovine 
oocytes at the germinal vesicle stage (Peddinti et al., 2010). The 
methods allowed identifying the signaling and the processes that 
may have an impact on oocytes developmental competence and 
maturation.

With a similar aim, MII developmentally competent oocytes 
(MIISN) were compared with oocytes that cease development at the 
2-cell stage (MIINSN) (Zuccotti et al., 2011, Zuccotti et al., 2008). The 
GO enrichment analysis performed with DAVID and the networks 
obtained using IPA allowed the identification of gene expression 
networks involved into the regulation of biochemical pathways 
representative of the adverse biological status of MIINSN oocytes. 
In addition, the exploited knowledge-based methods highlighted 
the essential role of the OCT4 transcription factor, whose down-
regulation in incompetent oocytes induces the up-regulation of a 
group of genes involved in the activation of adverse pathways, such 
as oxidative phosphorylation, mitochondrial dysfunction and apop-
tosis. More recently, the same authors provided a thorough analysis 
of the identified genes in preimplantation embryos derived from 
MIINSN and MIISN oocytes (Zuccotti et al., 2011). The transcriptional 
link between eggs, early preimplantation embryos and embryonic 
stem cells (ESCs) was assessed thanks to a comprehensive bioin-
formatics analysis that took advantage of the functions provided by 
the Orange software. First, the enriched GO terms were identified 
through the GO Browser widget, as shown in Fig. 4. A measure 
of the connection of these genes with cancer-related processes 
was assessed thanks to a statistical analysis of the gene expres-
sion data stored in ArrayExpress. Moreover, a literature-based 
search strategy and text mining techniques, described in (Nuzzo 
et al., 2010), were used to gather the available knowledge from 
PubMed about a set of OCT4-regulated genes whose transcripts 
were detected in both MII oocytes and 2-cell embryos. The text 
mining methods allowed retrieving a set of MeSH terms from the 
publications, which were combined with information from the Gene 
Ontology to assign to each gene a set of weighted annotation 
terms. The obtained annotation profiles were then used to assess 
a measure of the similarity among the genes, that allowed the 
construction of a OCT4-transcriptional network, aimed at exploring 
the contribution of not previously considered molecular factors to 
the mammalian egg developmental competence. 

Although the use of data automatically extracted from the 
literature is not very common in the publications related to oo-
cyte development, other works have shown the benefit of the 
obtained information. Novel proteomic technologies coupled with 
an exhaustive bioinformatics analysis were used to uncover the 

Fig. 6. The process of knowledge-based bioinformatics analysis. Data 
coming from high-throughput experiments are analyzed with methods that 
extract the available knowledge from different biological repositories. Results 
in terms biological annotation terms and networks connecting genes or 
proteins are further analyzed and refined based on the knowledge of the 
expert and on the evidence coming from the data. For instance, genes 
that were not previously included in the lists would be considered in light 
of the knowledge retrieved by means of the bioinformatics methods. The 
final aim of the process is to promote knowledge discovery.

Fig. 7. Example of a differentiation scale where a sample obtained from induced pluripotent stem cells (iPSCs) is projected to the scale to uncover 
its real stage of development with respect to standard conditions of differentiation.
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maternal proteins that play a role in mature oocytes (Zhang et al., 
2009). In this work, Babelomics allowed the identification of the 
over-represented and under-represented GO terms, while the text 
mining tool Pathway Studio was used for retrieving the entries in 
PubMed related to the proteins of interest. The results of the text 
mining procedure were visualized in a graph where the proteins 
were linked to their most frequently associated pathway-related 
keywords (e.g., oogenesis). 

In most of the presented approaches, researchers follow a data 
analysis pipeline that relies on the steps shown in Fig. 6. 

For example, Zuccotti et al., (2011) expanded the set of genes 
initially selected relying on the expression values considering the 
information extracted from GO and the literature. The knowledge 
bases and the methods for extracting and representing the knowl-
edge were then used to produce a OCT4 transcriptional network. 
This result was validated by the authors in order to identify bio-
logically relevant clusters in the network, and to define the most 
interesting genes (i.e. an additional set of OCT4-regulated genes) 
that were unveiled by means of the knowledge-based methodolo-
gies. The knowledge discovery process continued with the revision 
of the gene expression data from oocytes and embryos in order to 
highlight the change of transcription of the selected genes.

Similarly, the enrichment and literature-based analysis of the 
proteomics experiments conceived by Zhang et al., (2009) helped 
identifying a set of proteins of interest, whose gene names were 
used to query an additional database containing mRNA expression 
profiles in different tissues. This procedure allowed the identifica-
tion of a group of genes of the T-cell leukemia family that can be 
classified as oocyte-specific based on their expression patterns.

Knowledge-based bioinformatics have been successfully applied 
for the identification of the stem cells regulatory network (Campbell 
et al., 2007, Pardo et al., 2010), which shares a large part of the 
genes with the OCT4-transcriptional network active during oocyte 
development (Ding et al., 2012, Zhang et al., 2009, Zuccotti et 
al., 2011). In stem cell research, the reliability of the identified 
networks is usually increased by integrating information coming 
from different knowledge repositories. To discover the functions of 
the predicted list of OCT4 interactors, Pardo et al., (2010) used a 
set of bioinformatics resources, including GO, KEGG, PANTHER, 
MINT and other PPI databases, to retrieve the previously known 
interactions (Pardo et al., 2010). Similar studies have applied 
innovative pathway enrichment methods (Babaie et al., 2007) 
or approaches for analyzing the literature in PubMed (Campbell 
et al., 2007) achieving the same goal in the characterization of 
ESCs networks.

Future directions and challenges

The results of the studies presented in the previous section point 
out the evidence of a relationship between some transcription factors 
that play a key role in oogenesis and a number of genes taking part 
also in the regulatory networks active in ESCs. However, the link 
between eggs, early preimplantation embryos and ESCs should 
be further investigated in light of the great number of experiments 
on stem cells available in the biological data repositories. 

One of the first efforts made in this direction is represented by 
the Embryonic Stem Cells Database (ESCDb, http://biit.cs.ut.ee/
escd/). Based on human and mouse ESC-related datasets, this 
resource enables retrieving information on the interaction between 

a gene of interest and the most known transcription factors in stem 
cell development (Jung et al., 2010). Links to other databases 
allow searching for genes with a specific behavior in selected 
tissues or pathways.

Recently, there has been an increasing effort in exploiting the 
available genome-wide expression data to highlight the transcrip-
tional changes that occur during the differentiation of stem cells 
(Aiba et al., 2009, Dutkowski and Ideker, 2011). In particular, 
some of these studies have proposed specific tools that infer on 
the pluripotency status of cells. Muller et al., (2011) developed a 
classification method able to distinguish pluripotent from differenti-
ated samples (Muller et al., 2011). With a similar aim, a recently 
proposed bioinformatics pipeline was used to transform genome 
wide expression data into a graphical device that predicts the dif-
ferentiation status of ESCs (Zagar et al., 2011). Using this method, 
the stages corresponding to normal development are displayed in 
a one-dimensional ruler, referred to as differentiation scale. Given 
the transcriptional phenotype of a sample from new experimental 
conditions (e.g., induced pluripotent stem cells (iPSCs) or cellular 
lines treated with chemical agents), the model is used to project the 
experimental sample on the scale in order to determine its actual 
differentiation stage with respect to that of the control sample (Fig. 
7). Interestingly, a reduced set of genes was identified in each 
stage as responsible for determining the transcriptional signature 
of the cell in that stage, which included known pluripotency and 
differentiation markers as well as genes not previously studied in 
this field (Mulas et al. 2012). The results of these studies suggest 
that the signature of pluripotency is hidden in the transcriptome and 
may be unveiled by bioinformatics approaches. These data-driven 
predictive tools ought to be integrated with the available knowledge, 
including the established stem cells regulatory networks and the 
PPI databases. Differentially expressed genes contribute, only for 
a limited part, to the entire network that determines developmental 
changes. PPI resources may be useful to identify other relevant 
genes, i.e., those that have not been selected as differentially 
regulated in the experiment, but are surrounded by a number of 
regulated genes in the interaction network (Nitsch et al., 2010). 
Once the expanded network of genes that play a role for deter-
mining the signature of a specific pluripotency status have been 
derived, the results may be used to obtain a more precise picture 
of the links existing between ESCs and the mammalian oocytes.
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