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Introduction

Since the birth of the first mammal, a sheep, by nuclear transfer
(Willadsen, 1986) numerous studies have been carried out to
elucidate the developmental mechanisms in NT embryos. The
potential of this technology was envisioned for the study of devel-
opmental processes during embryogenesis, but also for the pro-
duction of genetically modified animals for commercial purposes.
Scientists stimulated by these ideas performed a large number of
experiments during the last decade that gave rise to substantial
achievements in this field of research. The recipient oocyte
(cytoplast), the donor cell (karyoplast) and their interplay were the
protagonists of this research. While the perspectives of this tech-
nology are very promising, the efficiency of NT is still very low.
Several questions related to early events during embryonic devel-
opment including oocyte activation, chromatin remodelling, gene
expression, and cell cycle regulation remain to be answered.
Activation of the recipient oocyte after NT is a key step in the cloning
procedure. The sperm naturally initiates oocyte activation during
fertilisation. However, numerous procedures have been devel-
oped to artificially activate oocytes. The purpose of this review is to
provide an update of the known events characterising sperm-
mediated oocyte activation in mammals, as well as the artificial

activation protocols used at present for the generation of partheno-
genetic and nuclear transfer embryos.

Activating the MII arrested oocyte

Mammalian oocytes (except of canine oocytes which are arrested
at prophase of meiosis I) are arrested at MII after ovulation and
complete meiosis after fertilisation. When removed from secondary
follicles, immature oocytes undergo spontaneous maturation and
remain arrested at MII stage until fertilisation. The MII arrest is
characterised by a high MPF activity (Nurse, 1990). MPF, a
heterodimer of cdc2 and cyclin B, is stabilised by CSF, which is
composed of at least three proteins: Mos (Sagata, 1989), MAPk
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(Haccard et al., 1993), and p90Rsk (Bhatt and Ferrell, 1999; Gross et
al., 1999). The sperm induces the release from the meiotic arrest by
a signal transduction pathway not fully understood; however, as we
will discuss below, calcium, MPF and its stabilising molecules play a
determinant role during oocyte activation. The proper interpretation
of the sperm-initiated events and oocyte response(s) during fertilisation
will give new clues for the development of activation protocols
mimicking the physiological fertilisation process.

Ca2+ as the trigger of oocyte activation

The binding of the sperm to the oocyte plasma membrane
induces intracellular Ca2+ release in the oocyte during fertilisation
(Lawrence et al., 1997). The initial rise of free cytoplasmic Ca2+

starts from the site of sperm penetration and expands as a wave
through the oocyte (Jaffe 1983; Whitaker and Swann, 1993). While
one Ca2+ transient is registered in echinoderm, fish, and frog
oocytes (Jaffe, 1983), repetitive calcium oscillations that last
several hours are observed in mammals (Miyazaki et al., 1993; Sun
et al., 1994; Nakada and Mizuno, 1998). This has been shown in
mice, hamster, rat, rabbit, porcine, bovine, and human oocytes
(reviewed by Jones, 1998). The first calcium wave originates from
the penetration site (Miyazaki et al., 1986), whereas subsequent
oscillations arise in the cortical region of the vegetal hemisphere
with a non-wave type uniform calcium rise in mouse oocytes
(Deguchi et al., 2000). Calcium oscillations are of low frequency,
and appear at intervals of 6-31 minutes in mouse (Deguchi et al.,
2000) and 8-25 minutes in bovine oocytes (Fissore et al., 1992).
The interval of Ca2+ transients is prolonged with time and last for
several hours, until pronuclear formation in mouse oocytes (Kline
and Kline, 1992; Deguchi et al., 2000). These Ca2+ oscillations last
for 22 hours in bovine with a decline in the amplitude by 12-15 hours
(Nakada et al., 1995). It is still not clear how the Ca2+ oscillations
are regulated; however, a recent study in ascidians demonstrates
the importance of cyclin B for the maintenance of Ca2+ oscillations.
When cyclin B decreases oscillations terminate, however, when a
stabilised form of cyclin B is injected, the calcium oscillations
continue indefinitely. The sperm-triggered calcium oscillations are
positively regulated by the MPF activity in the ascidian oocyte,
independent of the MAPk activity (Lavasseur and McDougall,
2000). These findings confirm early observations of Jones et al.
(1995) where mouse activated oocytes treated with colcemid (a
microtubule inhibiting drug) maintain calcium oscillations in the
presence of a metaphase plate, suggesting a cell cycle modulation
of sperm-induced Ca2+ transients (Jones et al., 1995). In contrast,
when colcemid treated mouse oocytes are incubated in the pres-
ence of the MPF inhibitor roscovitine, calcium oscillations are
suppressed after the two initial calcium spikes (Deng and Shen,
2000). Thus, inhibition of MPF activity in MII oocytes inhibits
sperm-induced calcium oscillations, indicating that MPF plays an
important role in regulation of the cytoplasmic Ca2+ excitability in
mouse oocytes (Deng and Shen, 2000).

There are at least three substantial differences between mam-
mals and species that generate a single calcium transient during
fertilisation (e.g. sea urchins, frogs and fish). First, in the case of
sea urchin, where meiotic maturation is accomplished before
fertilisation, a single calcium transient is sufficient to activate the
egg (Stricker, 1999). In contrast, mammalian oocytes are arrested
at metaphase II and they need to resume meiosis after fertilisation.

When a single Ca2+ pulse is applied in a mouse oocyte, completion
of meiosis is observed, while no pronuclear formation takes place.
Instead of a pronucleus, a metaphase plate (or MIII) forms after
extrusion of the second polar body (Kubiak et al., 1993). The
second difference is the timing of events following meiotic resump-
tion. While a frog oocyte initiates pronuclear formation within
minutes after sperm penetration, in mammals this is observed after
2-6 hours depending on the species (mouse: 3-4 hours, Krishna
and Generoso, 1977; bovine: 4-6 hours, Liu and Yang, 1999). One
single Ca2+ transient induces the degradation of MPF and later of
CSF in frogs; however, a single Ca2+ transient is not sufficient to
induce definitive MPF degradation in young matured mouse oo-
cytes (Kubiak et al., 1993). Third, since fertilisation is an external
process in frogs, the metaphase II arrested oocyte and the sperm
get in contact within a short period of time. In contrast, mammalian
fertilisation is internal, that means a variable length of time between
ovulation and fertilisation, suggesting that meiotic arrest in mam-
mals is essential to ensure successful fertilisation (Jones, 1998).
Cytostatic activity responsible for meiotic arrest has been shown in
mammals. Oocytes of c-mos-/- mice undergo spontaneous activa-
tion after ovulation (Colledge et al., 1994; Hashimoto et al., 1994).
Two recent studies using double-stranded RNA interference con-
firm the role of Mos on meiotic arrest in mammals (Wianny and
Zernicka-Goetz, 2000) and its importance in MAPk activation
(Svoboda et al., 2000). Two more components of the CSF, MAPk
and p90Rsk, are fully activated during MII arrest in mouse oocytes
(Kalab et al., 1996).

The effect of Ca2+ at fertilisation can be proved by the addition
of the calcium chelator BAPTA-AM in the fertilisation medium. No
cortical granule exocytosis and no completion of meiosis occur
when BAPTA-AM is present (Kline and Kline, 1992). However,
when a Ca2+ ionophore is applied, MII oocytes undergo cortical
granule exocytosis, second polar body extrusion, pronuclear for-
mation and development to blastocyst (Susko-Parrish et al., 1994).
The evidence presented before indicates that a Ca2+ rise and its
subsequent oscillations that last several hours are essential to
ensure the reinitiation and completion of meiosis in mammals.

Ca2+ mediated signal transduction

Three main hypotheses have been proposed as possible signal-
ling pathways for sperm-induced oocyte activation. The first, the
sperm conduit model, suggests a Ca2+ flow through a channel into
the oocyte. In the free sperm, Ca2+ flows in the acrosomal process.
When sperm and oocyte fuse, a steady flow of Ca2+ is pumped into
the endoplasmic reticulum of the oocyte. This finally overloads to
start the fertilisation wave (Jaffe, 1983; Creton and Jaffe, 1995).
However, evidence argues against the sperm conduit model in
mammals. As shown by Jones et al. (1998b), no increase in the
Ca2+ concentration is observed near the site of sperm-egg fusion.
Moreover, when decreasing the levels of extracellular Ca2+ to
levels that should prevent Ca2+ flow from the sperm, the activation
of the oocyte is not inhibited (Jones et al., 1998b).

The second hypothesis proposes a receptor-mediated signal
transduction localised on the oocyte plasma membrane. The
activated membrane receptor binds to a G-protein or a PTK and
activates PLC that induces the hydrolysis of PIP2 into diacylglycerol
and IP3 (Fig. 1). Several studies support this theory in sea urchin,
Xenopus laevis (reviewed by Sato et al., 2000) and mammals
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(Miyazaki, 1988; Fissore et al., 1995), however, no specific recep-
tors have been identified on the oocyte plasma membrane. It has
been proposed that integrins, which are present on the surface of
mouse oocytes, could be involved in the sperm-oocyte binding
process (Almeida et al., 1995), but a direct relation to sperm-oocyte
binding remains to be determined. Recently, the egg surface
protein CD9 has been shown to be essential in sperm-egg fusion
(Chen et al., 1999; Kaji et al., 2000; Le Naour et al., 2000; Miyado
et al., 2000). Indeed, it is proposed that the interaction of CD9 with
the integrin α6β1 could affect the ability of this integrin to bind to the
sperm ligand (Chen et al., 1999; Kaji et al., 2000; Le Naour et al.,
2000). Miyado and colleagues (2000) propose alternatively that
the α6β1 integrin transduces signals to CD9 to initiate/promote
fusion. However, a recent study demonstrates that the α6β1 integrin
is not essential for sperm-egg fusion and CD9 acts by itself or by
interacting with egg proteins other than the α6β1 integrin during the
sperm-egg fusion in the mouse (Miller et al., 2000). The sperm
ligand is still unknown, however, the cell surface protein present in
mouse sperms, fertilin β, is necessary for sperm-egg fusion (Cho
et al., 1998). While fertilin β is necessary for sperm-egg fusion,
absence of this protein in sperms and eggs does not interfere with
normal Ca2+ oscillations and egg activation (Cho et al., 1998).

After sperm-egg fusion the activated receptor may bind to a G
protein or PTK as a part of the signalling cascade (Fig. 1). However,
a recent report suggests that nitric oxide, produced by a sperm and/
or egg nitric oxide synthase, is the universal trigger of egg activa-

tion by increasing intracellular calcium release (Kuo et al., 2000).
The nitric oxide mediated calcium rise may involve activation of
Src-like kinase and subsequently of PLCγ (Hyslop et al., 2001).
Though this might be possible in sea urchin eggs, a recent study
demonstrates that no increase in nitric oxide is detected during
fertilisation in ascidian and mouse oocytes, arguing against a
specific role of nitric oxide during fertilisation in these species
(Hyslop et al., 2001).

Fertilisation-induced PTK phosphorylation has been observed
in sea urchins, starfish, ascidians and frogs. Phosphorylation of
Xyk, a tyrosine kinase purified from Xenopus laevis (Sato et al.,
1996), is not observed when either electrical shock or calcium
ionophore treatment are applied, indicating that elevation of intra-
cellular calcium is not sufficient to initiate activation and transloca-
tion of Xyk. This suggests that sperm-egg interaction leads to the
activation of PTK upstream of calcium signalling during Xenopus
fertilisation (Sato et al., 2000). Tyrosine phosphorylation during rat
fertilisation has been reported by Ben-Yosef and co-workers
(1998), and a significant inhibition of mouse fertilisation is observed
when PTKs are inhibited (Dupont et al., 1996). In accordance to
this, inhibition of PTK inhibits parthenogenetic activation in MII
porcine oocytes, suggesting that PTKs are involved in oocyte
activation in mammals (Kim et al., 1999). Inhibition of protein
tyrosine phosphatases by sodium orthovanadate induces high
pronuclear formation, cortical granule exocytosis, and a decrease
in MAPk activity (Kim et al., 1999). These events are inhibited when

Fig. 1. Possible activation mechanism initiated by the sperm during fertilisation.
DAG, diacylglycerol; IP3, inositol 1,4,5-trisphosphate; IP3 R, IP3 receptor; G, GTP-binding
protein, PIP2, phosphatidylinositol 4,5-bisphosphate; PKC, protein kinase C; PLC, phospho-
lipase C; RyR, ryanodine receptor; SF, sperm factor; SR, sperm receptor.
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oocytes are pre-incubated with the calcium chelator BAPTA-AM,
indicating that the stimulation of tyrosine kinase is responsible for
a calcium-dependent signalling pathway that leads to the activa-
tion events associated with fertilisation (Kim et al., 1999).

According to the receptor–mediated hypothesis of fertilisation,
stimulation of membrane receptors initiates the phosphoinositide
pathway via G-protein. The effect of G-protein in fertilisation has
also been studied in mammals. Injection of a hydrolysable form of
G-protein in hamster oocytes induces parthenogenetic activation
(Miyazaki, 1988). In contrast, inhibition of G-protein function inhib-
its sperm-induced calcium release and oocyte activation (Moore et
al., 1993), suggesting that G-protein activation is upstream of
calcium release. Although several G-proteins have been studied it
is still unknown which type of G-protein is involved in mammalian
egg activation (for review see Sato et al., 2000). Injection of
guanosine-5'-O-(3'-thiotriphosphate) (GTP-gamma-S), a hydroly-
sis-resistant analogue of guanosine triphosphate (GTP) that acti-
vates G-proteins, induces parthenogenetic activation in hamster
and pig oocytes (Miyazaki, 1988; Macháty et al., 1995). Experi-
ments in mice and pigs demonstrate that overexpression of mem-
brane receptors that bind to G-protein and activate phospholipase
C lead to calcium oscillations and oocyte activation (Moore et al.,
1993; Macháty et al., 1997a). In contrast, when G-proteins are
inhibited no oocyte activation occurs in the absence of sperms
(Moore et al., 1994). Stimulating surface integrins via an RGD-
peptide induces calcium transients and parthenogenetic activation
(Campbell et al., 2000), suggesting that G-protein-mediated signal
transduction pathways exist in bovine oocytes.

The receptor-mediated hypothesis involves the activation of
phospholipase C that catalyses the hydrolysis of PIP2 in the plasma
membrane generating IP3 and diacylglycerol. IP3 binds to its
receptor present on the surface of the endoplasmic reticulum and
elicits the transit of Ca2+ into the cytoplasm (Berridge, 1993; Fig. 1).
An inositol 1,4,5-trisphosphate-induced Ca2+-release demonstrated
in hamster eggs is responsible for the oscillations in intracellular
calcium after fertilisation (Miyazaki et al., 1992b). Brind and col-
leagues (2000) demonstrated that IP3R-depleted mouse oocytes
do not show the sperm-induced calcium signalling observed in
control oocytes indicating that Ca2+-signalling at fertilisation is
mediated via the IP3R in mouse. This is further demonstrated by the
fact that down-regulation of IP3R is not induced by SrCl2, suggest-
ing that persistent stimulation of the phosphoinositide pathway in
mouse oocytes by the sperm during fertilisation or by injection of
SE leads to down-regulation of the type 1 IP3R (Jallerette et al.,
2000). Indeed, type 1 IP3R is the predominant isoform present in
mouse and bovine MII oocytes (Parrington et al., 1998; He et al.,
1999). Down-regulation of IP3 receptors has been observed in
mouse (Parrington et al., 1998) and bovine (He et al., 1999)
oocytes after fertilisation, indicating that the decrease in the
amplitude of sperm-induced intracellular calcium oscillations as
fertilisation progresses toward pronuclear formation is a conse-
quence of down-regulation of the second messenger IP3. In
contrast, sperm-induced IP3R down-regulation is not observed
when mouse oocytes are parthenogenetically activated (Brind et
al., 2000; Jallerette et al., 2000).

Calcium release from RyRs induces intracellular Ca2+ oscilla-
tions in mouse oocytes (Swann, 1992). However, the results are
contradictory since another study reports no calcium transients
after injection of ryanodine into mouse MII oocytes (Kline and Kline,

1994). The authors suggested that differences might arise due to
different mouse strains used in this study (Kline and Kline, 1994).
Hamster oocytes do not possess RyRs, and no calcium rise is
induced after injection of ryanodine (Miyazaki et al., 1992b). In
contrast, RyRs have been localised in the cortex of mouse (Ayabe
et al., 1995) and bovine (Yue et al., 1998) MII oocytes in a region
apposed to the meiotic spindle (Ayabe et al., 1995). Specific
inhibition of RyRs or IP3Rs does not interfere reciprocally with their
ability to convert the zona pellucida glycoprotein ZP2 into ZP2f, a
post-fertilisation form (Ayabe et al., 1995). Moreover, when RyRs
are inhibited there is no interference with the activation following
fertilisation, suggesting that although RyRs are present and func-
tional, release of Ca2+ from this store is not essential for sperm-
induced egg activation (Ayabe et al., 1995). A co-operative effect
of ryanodine-sensitive and ryanodine-insensitive calcium stores
has been suggested in maintaining sperm-induced Ca2+-oscilla-
tions in human oocytes (Sousa et al., 1996). Injection of ryanodine
induces calcium transients (Fissore et al., 1995), pronuclear for-
mation and cleavage in bovine oocytes, supporting the idea that
this receptor may play a role in fertilisation of bovine oocytes (Yue
et al., 1998).

The third hypothesis of Ca2+-mediated signal transduction sug-
gests the introduction by the sperm of a soluble cytosolic factor that
triggers Ca2+ release (Dale et al., 1985; Swann, 1990). Several
studies have been carried out in marine invertebrates showing the
effect of SE in oocytes. When SE is injected into acidian oocytes
the Ca2+ oscillations observed are similar to those registered after
fertilisation. A spatio-temporal study of Ca2+ release suggests a
higher sensitivity of the oocyte cortex to sperm factor (Kyozuka et
al., 1998). Moreover, SE-induced Ca2+ oscillations are dependent
on oocyte CDK activity (McDougall et al., 2000). A recent study
shows a similar signalling pathway in response to SE injection in
ascidians as observed at fertilisation supporting the hypothesis
that a soluble sperm factor initiates Ca2+ release at fertilisation
(Runft and Jaffe, 2000). Ca2+ oscillations similar to those observed
after fertilisation are observed after injection of SE into hamster
(Swann, 1990), mouse (Swann, 1994), bovine (Wu et al., 1997)
and human oocytes (Homa and Swann, 1994). Furthermore,
oocyte activation and development to blastocyst have been re-
ported in bovine oocytes after SE injection (Fissore et al., 1998).
Cross-reactivity between sea urchin SE and mouse oocytes, and
porcine SE and oocytes of a marine worm, suggests that the
signalling molecule(s) present in the extracts is(are) well con-
served among species (Parrington et al., 1999; Stricker et al.,
2000). The nature of this factor has not been identified, however,
it has been determined that it is thermolabile (Kyozuka et al., 1998).
Moreover, different activity is detected in fractions of SE suggest-
ing a single protein factor as the active component of the SE in
ascidians (McDougall et al., 2000). As recently demonstrated,
sperm factor is able to induce increases in IP3 in sea urchin egg
homogenates (Jones et al., 2000) and mouse oocytes (Wu et al.,
2001). This suggests that sperm factor initiates and sustains
calcium rises by activating the phosphoinositide pathway (Wu et
al., 2001).

PLCγ1, PLCγ2 and PLCδ4 have been identified in mouse
sperms (PLCγ1 and PLCγ2) and rat testis (PLCδ4) (Dupont et al.,
1996; Lee and Rhee, 1996; Mehlmann et al., 1998). A PLC activity
present in SE induces Ca2+ oscillations in sea urchin extracts
(Jones et al., 1998b), suggesting that the sperm factor is a PLC
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(Swann and Parrington, 1999). Rice and colleagues (2000) showed
that a sperm cytosolic Ca2+-sensitive PLC activity generates IP3
from the hydrolysis of PIP2 present in intracellular membranes of
sea urchin egg homogenates. In an attempt to identify the sperm
PLC, the ability to generate IP3 and calcium release from SE,
different tissue-homogenates (as other sources of PLCs) and
recombinant PLCs (with greater specific activity) have been com-
pared (Jones et al., 2000; Rice et al., 2000). Since no PLC activity
has been found in sea urchin homogenates and mouse oocytes
when injected either with extracts from different tissues and with
recombinant PLCs, it is suggested that a novel type of PLC or a
specifically regulated PLC is present in sperms (Jones et al., 2000).
Two recent reports show that PLCγ1, PLCγ2 and PLCδ4 present in
fractions of boar SE do not induce calcium release and oocyte
activation in mouse-injected oocytes (Heyers et al., 2000; Wu et al.,
2001), confirming observations in sea urchin egg homogenates
(Jones et al., 2000). A recent study shows that PLCδ4-/- mouse
sperms fail to fertilize wild-type oocytes, demonstrating that PLCδ4
plays an essential role in the zona-pellucida induced acrosome
reaction (Fukami et al., 2001). However, PLCδ4-/- and PLCδ4+/+

sperms injected into eggs induce similar calcium transients and
activation rates, indicating that PLCδ4 is essential for events
preceding or leading to sperm fusion (Fukami et al., 2001).

A protein of 33 kDa named “oscillin” has been proposed as the
oscillogenic factor, since it induces Ca2+ oscillations in mouse
oocytes (Parrington et al., 1996). However, it has recently been
demonstrated that a recombinant oscillin does not trigger Ca2+

oscillations when injected into oocytes (Shevchenko et al., 1998).
Other sperm proteins have been suggested to be Ca2+-activating
proteins like the protein tyrosine kinase truncated c-kit (Sette et al.,
1997) and a perinuclear protein (Kimura et al., 1998), which could
be part of the perinuclear theca (Oko and Maravei, 1994). The
truncated c-kit gene product is absent in round spermatids and
accumulates in elongated spermatids. The fact that injection of
round spermatids does not activate mouse oocytes (Kimura and
Yanagimachi, 1995) suggests that the truncated c-kit might be an
important protein involved in sperm-induced oocyte activation.
Moreover, it has been shown that truncated c-kit-mediated egg
activation involves activation of PLCγ (Sette et al., 1998). Though
the presence of a cytosolic factor is supported by several findings,
a recent report by Perry et al. (2000) demonstrates the presence
of at least two submembrane components with activating activity
named SOAF. SOAF can be divided into a heat-sensitive and a
stable component. When injected individually both components fail
to induce calcium oscillations, while when co-injected the oscilla-
tions resemble those initiated by sperms and induce oocyte activa-
tion. This is the first evidence that multiple components are
involved in the induction of calcium oscillations (Perry et al., 2000).
The SOAF components are liberated from the perinuclear matrix
by an endoprotease that becomes activated upon exposure to the
reducing environment of the oocyte (Calvin et al., 1986). The SOAF
may be part of the perinuclear theca as described by Oko and
Maravei (1994). The perinuclear theca is the cytoskeletal coat of
the sperm nucleus composed of myelin and cytokeratin-like pro-
teins (Sutovsky and Schatten, 2000). Numerous proteins have
been identified in the perinuclear theca of mouse, hamster, rat, pig,
cattle and human sperms (reviewed by Sutovsky and Schatten,
2000). Moreover, sperm from patients with spermatogenetic disor-
ders associated with the absence of perinuclear theca fail to

activate human oocytes after intracytoplasmic sperm injection
(Battaglia et al., 1997). This suggests that components of the
perinuclear theca are involved in the activation signals during
fertilisation. The conclusion of Perry and co-workers (2000) pro-
posing multiple components as part of SOAF contrasts with the
hypothesis of a single cytosolic (probably a PLC) sperm factor
proposed by several authors (Swann and Parrington, 1999; Jones
et al., 2000; Rice et al., 2000). Further studies are certainly needed
to elucidate the nature of SOAF.

While a sperm-mediated signal is generally accepted, little is
known about the oocyte response to the sperm-induced activation.
A recent study proposes that the ability of an oocyte to respond to
sperm-induced calcium oscillations is dependent on the presence of
a machinery in the oocyte that is functional only once in mammalian
oocytes, and is inactivated by sperm components but not after
parthenogenetic activation (Tang et al., 2000). The inactivation of this
maternal machinery is neither dependent on IP3 receptor sensitivity
nor on the calcium content of the oocyte (Tang et al., 2000).

Sperm-induced calcium oscillations initiate a series of bio-
chemical events leading to full activation of the oocyte. This is
characterised by resumption of meiosis, pronuclear formation and
DNA replication. Finally, pronuclear apposition occurs, the nuclear
envelope breaks down and the chromatin condenses into chromo-
somes. The condensed chromosomes arrange themselves on a
common mitotic spindle and they are ready for the first cleavage
division. Thus, no pronuclear fusion occurs in mammals (Ascaris
type of fertilisation) as it is observed in sea urchins (Longo, 1997).
Moreover, a recent study shows that chromosomes stay separate
according to parental origin up to the 4-cell stage in the mouse. As
demonstrated by Mayer et al. (2000), when sperm-derived chro-
mosomes were stained with BrdU a topological separation of the
parental genomes is observed suggesting that parental chromatin
is not randomly distributed in the preimplantation embryo.

In the following part of the review the biochemical changes
occurring after fertilisation are compared to those observed after
artificial oocyte activation.

Artificial oocyte activation

As described before, the sperm is the natural stimulus respon-
sible for the activation of matured oocytes. However, certain
artificial stimuli trigger oocyte activation and elicit development to
blastocyst. The development to blastocyst of a female gamete
without contribution of a male gamete is defined as parthenogen-
esis (Kaufman, 1979). Parthenogenesis has been used as a model
to study biochemical and morphological events occurring during
early embryonic development (Collas et al., 1993). It has also
important implications for the successful performance of
biotechniques like NT.

Stimulating calcium signalling

Since Ca2+ transient is the key trigger of meiotic resumption
during fertilisation a wide range of procedures for artificial oocyte
activation have been established including mechanical, chemical
and physical stimuli that elicit one or several Ca2+ transients in the
oocyte. Mechanical disruption of the plasma membrane of frog
oocytes with a fine needle is sufficient to generate Ca2+ influx and
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to initiate development (Kawamura, 1939). Microinjection of Ca2+

is another way to increase intracellular calcium. This is effective
for the activation of pig oocytes where all the events normally
occurring following fertilisation, i.e. cortical granule exocytosis,
decrease of the H1 kinase activity (as an indicator of MPF
activity), changes in the protein synthetic profile, and pronuclear
formation, are observed after microinjection of CaCl2 (Macháty et
al., 1996).

Chemical activation can be induced by exposure to Ca2+

ionophore, 7% ethanol, strontium chloride, phorbol ester and
thimerosal (Nakada and Mizuno, 1998; reviewed by Macháty et
al., 1998). Ionophore A23187 promotes the release of intracellu-
lar Ca2+ stores but also facilitates the influx of extracellular Ca2+

ions (Kline and Kline, 1992). Ionomycin is another potent Ca2+

ionophore currently used in NT protocols (Cibelli et al., 1998;
Wells et al., 1999). It mobilises intracellular Ca2+ by depletion of
Ca2+ stores. Exposure of matured oocytes to 7% ethanol for 5-7
min induces successful activation and pronuclear formation
(Presicce and Yang, 1994) by promoting the formation of IP3 and
the influx of extracellular Ca2+. The substances mentioned above
induce a single Ca2+ rise in the oocyte. However, the initial Ca2+

rise is normally followed by Ca2+ oscillations during fertilisation in
mammals. Strontium chloride induces multiple Ca2+ transients
probably by displacing bound Ca2+ in the oocyte (Whittingham
and Siracussa, 1978) but also by inducing intracellular Ca2+

release (Kline and Kline, 1992). Strontium chloride has been
successfully used to activate mouse oocytes after NT (Wakayama
et al., 1998). Phorbol ester, which mimics endogenous
diacylglycerol, activates the calcium- and phospholipid-depen-
dent protein kinase C (Nishizuka et al., 1984) and induces calcium
oscillations and pronuclear formation in mouse oocytes
(Cuthbertson and Cobbold, 1985). However, activation rate is
lower when compared to calcium ionophore (Uranga et al., 1996).
This compound has not been used so far in other mammalian
oocytes. Thimerosal, a sulfhydryl-oxidising agent that induces
repetitive Ca2+ oscillations, has been successfully used for the
activation of bovine oocytes (Fissore et al., 1992; 1995). How-
ever, the peak and the duration of the calcium oscillations induced
by thimerosal are shorter than those of the first rise induced by
spermatozoa during fertilisation (Nakada and Mizuno, 1998).
While mouse oocytes show repetitive calcium transients when
incubated with thimerosal (Cheek et al., 1993; Kline and Kline,
1994) no oocyte activation is observed (Cheek et al., 1993).
Evidence of destruction of the meiotic spindle has been detected
in thimerosal-incubated oocytes after staining of tubulin and
chromatin (Cheek et al., 1993). Thimerosal is acting on IP3-
induced Ca2+ release in mouse oocytes (Kline and Kline, 1994).
In accordance to this report, repetitive calcium oscillations are
observed in thimerosal-treated hamster (Swann, 1991; Miyazaki
et al., 1992a) and rabbit oocytes (Fissore and Robl, 1993). This
is mediated by IP3 release (Miyazaki et al., 1992a) and activation
of IP3R (Fissore and Robl, 1993). Thimerosal incubation followed
by it inhibitor dithiothreitol induces parthenogenetic activation and
successful development to the blastocyst of pig oocytes (Macháty
et al., 1997b). When used after reconstructing embryos by NT
thimerosal/dithiothreitol induces similar pronuclear formation rate
to those obtained after electrical stimulation (Tao et al., 2000).

Electrical stimulation is an alternative to chemical activation to
induce Ca2+ influx through the formation of pores in the plasma

membrane. The success of this procedure depends on the size of
the pores formed but also on the ionic content of the medium and
the cell type. Moreover, the time to restore the membrane integrity
is dependent on the temperature that should ensure the fluidity of
lipids and proteins in the membranes (Zimmermann et al., 1985).
Periodically repeated electrical stimulation mimics the pattern of
oscillations observed during fertilisation (Ozil, 1990). The single
Ca2+ rise recorded after electrical stimulation is dependent on the
presence of extracellular Ca2+ ions. However, when rabbit oocytes
are pulsed in the presence of lithium (which prevents the produc-
tion of IP3) oocyte activation is inhibited (Ozil, 1990). This suggests
that electrical stimulation induces the production of IP3 that leads
to intracellular Ca2+ release. Electroporation of IP3 in a calcium-
and magnesium-free medium followed by incubation in 6-DMAP
has been used to activate parthenogenetic and NT rabbit embryos
(Mitalipov et al., 1999). Another physical stimulus used for oocyte
activation is the exposure of oocytes to room temperature prior NT
(Stice et al., 1994).

Inhibiting MPF and MAPk activity

The drop of MPF and MAPk activity should be triggered to
induce resumption of meiosis, chromatin decondensation and
transition to interphase. MPF has been described as the biological
activity of cytoplasm capable of reinitiating meiosis in prophase
arrested oocytes (Masui and Markert, 1971) and is essential for
meiotic arrest at MII (Nurse, 1990). Since the concentration of
cyclin B oscillates during the cell cycle, the level of MPF molecules
depends on the synthesis and degradation of cyclin B. MPF activity
rises during oocyte maturation and the phosphorylation status of its
constituents determines its kinase activity (Motlik et al., 1998). This
phosphorylation is regulated by specific kinases like cyclin-activat-
ing kinase, and other kinases like Myt-1 and Wee-1 (described in
Xenopus laevis and Schizosaccharomyces pombe). The phos-
phatase cdc25 activates MPF by dephosphorylation of the tyr15
and thr14 sites of cdc2 (Fig. 2). Specific substances that inhibit the
activation site of this phosphatase are currently used for oocyte
activation (see below). During the MII arrest the high MPF activity
is maintained through continuous equilibrium between cyclin B
degradation and synthesis (Kubiak et al., 1993). This explains why
protein synthesis inhibitors effectively induce oocyte activation
(see below). MPF activity is stabilised by CSF, which consists of
Mos, MAPk, and p90Rsk. These proteins maintain the condensed
status of chromatin, thus avoiding DNA replication between MI and
MII (Verlhac et al., 1994). The pattern of inactivation of MPF and
MAPk activities after activation is used as indicator for the success
and efficacy of artificial activation protocols.

One possible way to inhibit MPF is to incubate matured oocytes
in broad-spectrum inhibitors of protein synthesis and/or protein
phosphorylation (Fig. 2). Two inhibitors of protein synthesis, cyclo-
heximide and puromycin, induce oocyte activation after prolonged
periods of incubation in mouse (Moses and Kline, 1995b) and
human oocytes (Balakier and Casper, 1993). However, in rat
(Zernicka-Goetz et al., 1993) and pig oocytes (Nussbaum and
Prather, 1995) these inhibitors are not sufficient to induce activa-
tion. The combined use of a Ca2+ stimulating substance with an
inhibitor of protein synthesis has been widely tested for activation
of mouse, sheep and cattle oocytes. Ca2+ ionophore plus cyclohex-
imide induce a high rate of pronuclear formation and development
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to blastocyst in mouse oocytes (Hagemann et al., 1995). Similar
results have been obtained with ethanol plus cycloheximide in
bovine (Presicce and Yang, 1994) and when used after somatic NT
several offspring have been produced (Zakhartchenko et al.,
1999a,b). However, as stated by Soloy et al. (1997), cycloheximide
not only depletes the oocyte from proteins maintaining MPF
activity, but also inhibits the translation of proteins responsible for
the initiation of DNA replication. Indeed, initiation of DNA synthesis
is delayed in NT embryos activated by ethanol plus cycloheximide
(Alberio et al., 2001). Hence, postimplantation development is
affected in a high proportion of NT embryos produced with cyclo-
heximide showing pregnancy loss, hydroallantois, perinatal death
and skeletal malformations (Zakhartchenko et al., 1999a,b and
unpublished observations). Whether the delayed cleavage due to
this activation procedure affects postimplantation development is
unclear, however, early embryonic cleavage is not random and it
has important consequences in further developmental events, i.e.
establishment of cell lineages and cell differentiation (Piotrowska
and Zernicka-Goetz, 2001).

A more specific inhibition can be achieved by inhibition of protein
kinases. It has been shown that a cAMP-dependent kinase inhibi-
tor localises in the nucleus of G2/M cells. When inhibited, the cell
cycle is arrested suggesting that protein kinase inhibition may be
a normal function for the transition from M-phase to G1 (Wen et al.,
1995). When Xenopus laevis oocytes are exposed to 6-DMAP, a
phosphatase inhibitor, resumption of meiosis without Ca2+ release
is observed (Zhang and Masui, 1992). Similarly, pig oocytes
treated with staurosporine and H7 (both inhibitors of protein
kinases) resume meiosis without Ca2+ release (Rickords et al.,
1992), and undergo pronuclear formation and development to
blastocyst (Wang et al., 1997). However, mouse and bovine
oocytes are not activated when incubated in 6-DMAP without
previous Ca2+ release (Szöllösi et al., 1993; Liu et al., 1998).

The combination of a Ca2+ ionophore with 6-DMAP induces high
rates of activation, pronuclear formation and development to

blastocyst in ovine (Loi et al., 1998) and bovine (Liu et al., 1998).
These protocols have been successfully used for the production of
cloned calves after somatic NT (Cibelli et al., 1998). However,
oocytes activated with ionomycin and 6-DMAP display some
alterations in the DNA content, reflecting an abnormal pattern of
karyokinesis during the first cell cycle (de la Fuente and King,
1998). Numerous failures in the establishment of pregnancies,
placental malformations and perinatal death have been reported
after activation of NT embryos with this protocol (Cibelli et al.,
1998). 6-DMAP inhibits phosphorylation of ribosomal protein S6
and activation of the 70-kDa S6 kinase in somatic cells and it
drastically affects cytoskeletal components leading to the forma-
tion of micronuclei containing chromosomes. This suggests that a
disturbance in G1 of a signal transduction pathway may contribute
to abnormal mitosis (Simily et al., 1997). As shown by Schlegel et
al. (1990), 6-DMAP induces premature chromatin condensation
and premature mitosis in cells arrested in S-phase, suggesting a
role for protein dephosphorylation in the control of mitosis (Schlegel
et al., 1990). Protein kinase inhibition is an efficient way to induce
oocyte activation, however, it should be considered that these
inhibitors are not specifically interfering with one kinase, but with
several involved in other cell functions, whose inhibition may be
deleterious in subsequent cellular events after activation.

MAPk is the family name for a number of Ser/Thr protein
kinases. Two MAPk isozymes are active during meiosis: the
extracellular signal-regulated protein kinases 1 and 2 (Verlhac et
al., 1994). Phosphorylated MAPk localises in the spindle poles of
mouse MII oocytes, suggesting that this protein plays a role on
spindle organisation (Verlhac et al., 1993). Oocytes from mos
knockout mice, lacking MAPk activity, show diffuse spindles and
are unable to extrude a normal polar body (Choi et al., 1996).
Further evidence of the significance of MAPk activity for spindle
organisation has been provided in porcine and bovine oocytes.
When MAPk activity is inhibited, disorganisation of meiotic spindle
and impaired polar body extrusion are observed in bovine and

Fig. 2. Different ways to inhibit MPF activity. Cycloheximide inhibits the synthesis of
cyclin B, 6-DMAP inhibits the phosphorylation of the phosphatase cdc25, and bohemine
binds to the ATP binding site of the MPF molecule.
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porcine activated oocytes, respectively (Gordo et al., 2001; Tatemoto
and Muto, 2001). MAPk activation is essential for MII arrest in
mouse (Colledge et al., 1994; Hashimoto et al., 1994) and bovine
oocytes (Gordo et al., 2001). The decrease in MAPk activity is
correlated with the formation of a nuclear envelope after partheno-
genetic activation of mouse (Moos et al., 1995) and cattle oocytes
(Liu and Yang, 1999). Moreover, MAPk inactivation correlates with
the initiation of DNA synthesis (Carroll et al., 2000). This suggests
that inhibition of MAPk activity, independently of MPF inactivation,
leads to oocyte activation. Indeed, it has been shown that pig
oocytes incubated with the MAPk inhibitor U0126 do complete
meiosis and form a pronucleus (24%), however, polar body emis-
sion is impaired (Tatemoto and Muto, 2001). Moreover, while
MAPk inactivation is accelerated in U0126-treated oocytes, there
is no difference in the time course of pronuclear formation, sug-
gesting that MAPk activity is partly involved in pronuclear develop-
ment (Tatemoto and Muto, 2001). Inactivation of MAPk can also be
induced by stimulation of protein kinase C. Phorbol 12-myristate
13-acetate (PMA), a protein kinase C activator, induces activation
of mouse oocytes, and inactivation of MAP kinase (Sun et al.,
1999). The PMA-mediated activation is not dependent on calcium
increase (Moses and Kline, 1995a).

Protein phosphatase inhibitors have also been tested to induce
oocyte activation. When pig oocytes were activated by ionomycin
and subsequently incubated in okadaic acid, an inhibitor of protein
phosphatases 1 and 2A, no oocyte activation has been observed
(Grocholova et al., 1997). In rats, incubation of puromycin-activated
oocytes with okadaic acid inhibits parthenogenetic activation as well
(Zernicka-Goetz et al., 1993). Mouse oocytes activated with A23187
and okadaic acid show disruption of the spindle, disjunction of
chromosomes and no pronuclear formation; however, when this
treatment is combined with 6-DMAP, pronuclear formation is ob-
served (Moses, 1996). Protein phosphatase activity determined in
activated oocytes demonstrates that the type 2A protein phos-
phatase plays a role in cell cycle regulation and undergoes changes
in its activity during early mammalian development (Winston and
Maro, 1999).

Multiple factors may be involved in the alterations observed in
NT embryos, however, the activation stimulus should not be
neglected as a possible cause of failure in the production of normal
cloned animals. Non-specific inhibition of several metabolic path-
ways in oocytes may affect the selective activation/inhibition of
specific kinases and phosphatases and may have negative conse-
quences for embryonic development.

Cyclin-dependent kinase inhibitors

Since a co-ordinated series of events is responsible for the
signalling pathway initiated by the sperm during fertilisation, it is
reasonable to think that specific kinases and phosphatases are
involved differentially in the transition from MII arrest into inter-
phase. The cell cycle is regulated by kinases that are activated by
cyclin binding and phosphorylation, and inhibited by phosphoryla-
tion, proteolysis and by binding of specific CDKIs. Natural CDKIs
play a major role in the control of the cell cycle progression. By
forming quaternary complexes with the target kinase, the CDKI
p21cip1 induces G1 arrest and its expression correlates with termi-
nal differentiation in several cell lineages (Jiang et al., 1994).
Several CDKIs have been described as mediating extracellular

negative signals that result in G1 arrest by specific cyclin/cdk
complex inhibition. Moreover, they have also been implicated in the
mechanisms of checkpoint control of DNA integrity and spindle
formation (Graña and Reddy, 1995). The development of synthetic
CDKIs in the last years has been continuously growing, since
several human diseases can be treated with these compounds.
The first compound identified as CDKI has been 6-DMAP, a
substance of low selectivity. Butyrolactone I, isolated from As-
pergillus strain 25799, inhibits selectively cdk2 and cdc2, arresting
the cell cycle at G2/M and G1/S (Kitagawa et al., 1993; Gray et al.,
1999). By using combinatorial chemistry new compounds have
been synthesised with high selectivity and efficiency. These purine
analogues target the ATP-binding site of cyclin/cdk molecules
(Kitagawa et al., 1993). Olomoucine, roscovitine and bohemine are
some of these new compounds with higher selectivity than
butyrolactone I (Gray et al., 1999; Hájduch et al., 1999). The
inhibition of specific kinases by these molecules during oocyte
activation is of high interest in a way to mimic sperm-mediated
events during fertilisation.

Targeted oocyte activation

The use of this new generation of CDKIs for inhibition of MPF
activity has been proposed by Motlik et al. (1998). Since then,
several studies have been carried out to evaluate the effects of
these drugs on cell cycle progression, oocyte maturation and
oocyte activation. The high reversibility upon cell cycle progression
in somatic cells (Alessi et al., 1998) and development to embryos
of bovine oocytes artificially arrested by these inhibitors before in
vitro maturation and fertilisation (Mermillod et al., 2000) suggest
that these substances do not impair the viability of treated cells.
Moreover, when MII arrested bovine oocytes are activated with
bohemine for 6 hours high pronuclear formation rate is observed (>
95%) and DNA synthesis starts synchronously in more than 85%
of the oocytes 2 hours after withdrawal from the inhibitor (Alberio
et al., 2000). A recent study also shows that, when bovine and
porcine oocytes are specifically targeted with butyrolactone I, the
MPF activity is inhibited, while the condensing activity of chromo-
somes is not affected (Kubelka et al., 2000). In contrast, fertilisation-
induced calcium oscillations are inhibited in mouse oocytes fertilised
in the presence of roscovitine (Deng and Shen, 2000).
The early initiation of DNA synthetic activity after removal from the
activation medium (Alberio et al., 2000), the maintained ability to
condense chromatin (Kubelka et al., 2000) and the high develop-
ment to blastocysts in bovine (Mermillod et al., 2000, Lonergan et
al., 2000) demonstrate that these new CDKIs do not irreversibly
interfere with cell cycle progression. Biochemical studies reveal
that MPF activity decreases abruptly after incubation of bovine
oocytes in bohemine, however, MAPk inactivation decreases more
slowly (Alberio et al., 2000). A similar pattern of MPF and MAPk
inactivation has been observed after in vitro fertilisation of bovine
oocytes (Liu and Yang, 1999). Chromatin remodelling after so-
matic NT has been evaluated in cattle after activation with bohemine.
The dynamic of pronuclear development and initiation of DNA
synthesis is similar as in bovine parthenotes. Moreover, after the
end of the first cell cycle more than 50% of the cleaved embryos are
of normal ploidy. This rate is similar to embryos activated by a
standard activation protocol (Alberio et al., 2001). In vivo data
provided by Hill et al. (2000) demonstrate that bovine cloned
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embryos activated by butyrolactone I come to birth. However, there
is no improvement in the pregnancy and survival rates after birth
compared to reports where other activation procedures have been
used (Cibelli et al., 1998; Zakhartchenko et al., 1999a,b).

The studies presented above suggest that specific inhibitors of
CDKs might be useful for the understanding of cellular events and
may contribute to elucidate the mechanism involved in partheno-
genetic or sperm-mediated oocyte activation in mammals, and
consequently it may be helpful for the development of efficient
activation protocols.

Summary

Events after fertilisation have been carefully studied in the last
decades. However, there are still several questions to be clarified
in relation to the signalling pathway initiated by the sperm, the
identification of proteins or factors involved in the activation of the
arrested oocyte, and the inactivation of specific molecules involved
in the meiotic arrest. The present state of knowledge in mammalian
fertilisation allows the development of activation protocols that
closely mimic the events initiated by the sperm according to certain
major factors (MPF activity and MAPk activity). These protocols
are successfully used for the activation of oocytes after NT giving
rise to offspring. Few cloned animals have yet been produced.
However, the pregnancy and the survival rates after birth are not
significantly different when different activation protocols are com-
pared. This fact argues for a major reason for the low success in the
efficiency of NT. Eventually, factors related to the recipient oocyte,
the donor cell or the culture conditions are part of these major
problems that the reconstructed embryo has to overcome to
develop into a normal offspring. Nonetheless, the development of
activation protocols that closely imitate the mechanism of activa-
tion initiated by the sperm are of special interest to improve the
developmental potential of cloned embryos.
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