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ABSTRACT  For successful reproduction, angiosperms must form fertile flowers at the appropri-
ate positions and at the appropriate times. The reproductive transition is especially important for 
monocarpic plants that only flower once. In the model annual plant Arabidopsis thaliana, this 
transition is controlled through regulation of a group of genes termed floral meristem identity 
genes, of which LEAFY (LFY) is arguably the most important. LFY orthologs are found throughout 
land plants and are essential for angiosperm reproduction. These genes have also been implicated 
in reproductive development in gymnosperms. LFY encodes a plant-specific transcription factor 
that can act as either an activator or repressor depending on context, including what co-factors 
it is interacting with. It controls multiple aspects of floral morphogenesis, including phyllotaxis, 
organ number, organ identity and determinacy. Much progress has been made in elucidating the 
molecular mechanisms through which LFY and its orthologs contribute to a precise switch to 
flowering. We discuss the current state of knowledge in Arabidopsis, with an emphasis on known 
target genes and co-factors of LFY.
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The flower is the poetry of reproduction. 
It is an example of the eternal seductiveness of life.

Jean Giraudoux

Introduction

Reproduction is essential for all organisms. In angiosperms, 
the unit of reproduction is the flower. Plants, unlike animals, have 
indeterminate growth, which is mediated by meristems. Meristems 
are groups of undifferentiated stem cells that give rise to the plant 
body. At germination, seedlings contain two such meristems, the 
shoot apical meristem (SAM) and the root apical meristem (RAM). 
During vegetative growth, the SAM produces lateral organs at its 
flanks as well as producing those cells that form the plant stem. 
During the reproductive phase, lateral meristems will become 
flowers. Reproductive success depends on initiating flowering 
at the right time and maintaining reproductive fate until the plant 
successfully sets seeds. The precise timing of reproduction is es-
pecially important in plants that only flower once, such as annuals. 
This review will concentrate on reproduction, specifically flower 
formation, in Arabidopsis thaliana, a model annual angiosperm. 
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Transition to reproduction in Arabidopsis

Arabidopsis is a facultative long day plant and has much ac-
celerated time to flowering under long days, although it will even-
tually flower under short day conditions. The reproductive phase 
of Arabidopsis is complex. The first event in the transition is the 
change of the SAM into an inflorescence meristem (IM). During 
the vegetative phase, Arabidopsis grows as a rosette, with little 
internode elongation. However, the transition to reproduction is ac-
companied by bolting (the elongation of the stem of the internodes; 
Fig. 1A). In addition, the IM produces several cauline leaves with 
associated branches before producing flowers that are not sub-
tended by bracts, modified leaves associated with flowers, which 
are suppressed in Arabidopsis (Fig. 1A). Unlike shoots, flowers 
are determinate structures that give rise to a set number of floral 
organs and then cease growth. Floral meristems (FMs) initially 
have a growth phase during which they increase in size. They then 



208    N.S. Siriwardana and R.S. Lamb

Kunst et al., 1989), do not function in specification of the perianth 
(sepals and petals; reviewed in (Litt and Kramer, 2010). All the 
floral homeotic genes encode MADS box transcription factors (Irish, 
2010; Sablowski, 2010) with the exception of AP2, which encodes 
a founding member of a plant specific group of transcription fac-
tors, the AP2/EREBP family (Riechmann and Meyerowitz, 1998). 

As mentioned above, reproductive transition in Arabidopsis is 
characterized by two phases, one in which paraclades, composed 
of cauline leaves subtending flower-bearing branches, are produced 
and then one in which flowers are produced. Two models have 
been proposed to explain the determination of the inflorescence 
paraclades. The first model postulates that there are two transitions 
that occur in sequence from the base to the apex, the first to bolting 
and the second to flowering (Schultz and Haughn, 1993; Haughn 
et al., 1995; Ratcliffe et al., 1998). The other model holds that there 
is only one bidirectional transition responsible for both the base to 
apex progression of flowers and the apex to base progression of 
paraclades (Hempel, 1994). It has been suggested that the two 
models are not mutually exclusive and may depend on the strength 
and duration of flowering signals (Suh et al., 2003; Pouteau and 
Albertini, 2009; Pouteau and Albertini, 2011). Regardless, both 
the bolting transition and the flowering transitions are important 
for reproduction in Arabidopsis.

The transformation of the SAM into an IM is tightly regulated by 
both endogenous and environmental factors that integrate to result 
in flowering (Parcy, 2005). Experiments beginning in the 1920s 
have demonstrated that different plants have varying requirements 
to trigger flowering (Garner and Allard, 1920). In Arabidopsis, a 
number of forward genetic screens have identified many genes 
that are involved in control of flowering time. Subsequent genetic 
analysis has defined at least five pathways in Arabidopsis that 
control this process: the photoperiod pathway, the vernalization 
pathway, the autonomous pathway, the gibberellic acid (GA) 
pathway and a developmental age pathway (Martinez-Zapater et 
al., 1994; Araki, 2001; Mouradov et al., 2002; Simpson and Dean, 

2002; Bastow and Dean, 2003; Amasino, 2004; Boss et al., 2004; 
Jack, 2004; Sung and Amasino, 2004). A recent review (Srikanth 
and Schmid, 2011) summarizes these five pathways in depth and 
they will not be discussed in detail here. These pathways converge 
on a set of genes that include floral meristem identity genes, which 
are discussed below.

The floral meristem identity genes

Once an IM is formed, it will begin generating FMs on its flanks 
after formation of 2-5 cauline leaves. Floral meristem identity genes 
are required to specify the lateral meristems as flowers. The flo-
ral meristem identity genes encode transcription factors and are 
involved in a complex network of mutual regulation (Fig. 2). Floral 
meristem identity proteins in Arabidopsis include LEAFY (LFY; 
(Weigel et al., 1992; Blázquez et al., 1997; Nilsson et al., 1998), 
the related MADS box transcription factors AP1 (Mandel et al., 
1992; Bowman et al., 1993; Irish and Sussex, 1990; Ferrandiz et 
al., 2000), CAULIFLOWER (CAL; (Kempin et al., 1995; Ferrandiz 
et al., 2000) and FRUITFUL (FUL; (Ferrandiz et al., 2000), the 
SEP MADS box transcription factors (SEP1-4), especially SEP3 
and SEP4 (Ditta et al., 2004; Castillejo et al., 2005; Kaufmann et 
al., 2009), the MADS box proteins AGAMOUS LIKE24 (AGL24) 
and SHORT VEGETATIVE PHASE (SVP; Gregis et al., 2008), the 
class 1 HD-Zip transcription factor LATE MERISTEM IDENTITY1 
(LMI1; (Saddic et al., 2006) and the R2R3 class MYB transcription 
factor LATE MERISTEM IDENTITY2 (LMI2)/AtMYB17 (Pastore et 
al., 2011). All of the genes encoding these proteins are expressed 
in FMs (Mandel et al., 1992; Hempel et al., 1997; Hartmann et al., 
2000; Pelaz et al., 2000; Yu et al., 2002; Ditta et al., 2004; Saddic 
et al., 2006; Pastore et al., 2011). In Arabidopsis, LFY and AP1 are 
the two most important floral meristem identity regulators (Huala and 
Sussex, 1992; Weigel et al., 1992; Bowman et al., 1993; Mandel 
and Yanofsky, 1995; Ferrandiz et al., 2000). In addition to these 
positive promoters of floral identity, there is a negative regulator 
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Fig. 1. The Arabidopsis thaliana reproductive transition and flower formation. (A) 
During the vegetative phase, rosette leaves are produced without internode elongation. 
Upon transition to reproduction, internode elongation is activated to form the bolt and 
several branches with subtending cauline leaves are made before lateral meristems be-
come flowers. Arrows indicate indeterminate growth. (B) The ABCE model for floral organ 
specification. Diagram of a flower showing the arrangement of sepals, petals, stamens and 
carpels in whorls 1-4, respectively. The ABCE genes act combinatorially to specify organ 
identity, as indicated below the flower. Barred lines indicate mutual repression between 
A and C class activities.

begin to produce floral organs in a whorled pattern, 
starting at their flanks with four sepals followed by 
four petals, five to six stamens and two fused carpels 
in the center of the flower. The identity of the floral 
organs depends on the activity of floral homeotic 
genes, which can be divided into four classes, A, B, 
C and E (Fig. 1B; reviewed in (Krizek and Fletcher, 
2005). The A, B and C genes act in a combinatorial 
manner to specify each organ type. The relatively 
recently identified SEPALLATA genes (SEP1-4) 
function with the other homeotic genes in specifying 
floral organs (class E; (Pelaz et al., 2000; Ditta et al., 
2004). Class A genes function alone to specify sepal 
identity in the outermost whorl. Class A and B genes 
together specify petals in the second whorl. Class B 
and C genes specify stamens in the third whorl and 
class C alone functions to specify carpel identity in 
the inner most whorl. A and C genes also negatively 
regulate each other (Bowman et al., 1991; Coen and 
Meyerowitz, 1991; Weigel and Meyerowitz, 1994). 
More recent work has shown that A genes may only 
function in Arabidopsis and its close relatives, as or-
thologs of the A genes from Arabidopsis, APETALA1 
(AP1; Irish and Sussex, 1990) and APETALA2 (AP2; 

A       B
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of floral fate, TERMINAL FLOWER1 (TFL1), which is expressed 
in the IM and encodes a member of the CETS (CENTRORADIA-
LIS/TFL1/FT) family of plant proteins that have similarities to Raf 
kinase inhibitory protein and a phosphatidylethanolamine-binding 
protein and function in transcriptional complexes (Liljegren et al., 
1999; Ratcliffe et al., 1999). TFL1 prevents the IM from expressing 
floral meristem identity genes and becoming a flower, therefore 
maintaining its indeterminate nature. 

The MADS box transcription factor-encoding gene AP1 is a 
floral meristem identity regulator in Arabidopsis and its homologs 
in other species also appear to function in floral meristem identity 
and/or floral induction (reviewed in (Litt and Kramer, 2010). AP1 
is expressed throughout the very young FM before becoming 
confined to the outer two whorls at stage 3 of floral development 
(Mandel et al., 1992). AP1 expression is directly activated by the 
floral meristem identity genes LFY, LMI2, AGL24, SVP and SEP3 
(Fig. 2; Wagner et al., 1999; Kaufmann et al., 2009; Grandi et al., 
in press; Pastore et al., 2011). AP1 activates genes promoting floral 
organ formation and represses flowering time genes to maintain 
the floral fate of the meristem (Hill et al., 1998; Tilly et al., 1998; 
Ng and Yanofsky, 2001; Yu et al., 2004a; Liu et al., 2007). In ap1 
mutants, extra cauline leaves are made before the formation of 
flowers. ap1 flowers have leaf-like sepals and no petals, although 
stamen and carpel development are normal. In addition, ectopic 
flowers form in the axils of the leaf-like sepals, a phenotype that 
has been interpreted as a floral meristem identity defect (Irish and 
Sussex, 1990; Bowman et al., 1993). The effect of loss of AP1 
function on floral identity is not as severe as loss of its orthologs 
in some other groups of angiosperms due to the presence of the 
CAL gene. CAL is a paralog of AP1 found in Brassicas that is 
partially redundant with AP1 (Kempin et al., 1995). ap1-1; cal-1 
mutants show complete transformation of flowers into meristems, 
although loss of CAL alone has no phenotype (Bowman et al., 

1993). However, eventually the meristems of ap1-1; cal1-1 plants 
will form differentiated flowers that resemble the flowers of ap1 
single mutants. This is due to the activity of FUL, one of the closest 
genes to AP1/CAL in the Arabidopsis genome. Loss of all three of 
these genes leads to a severe meristem identity defect (Ferrandiz et 
al., 2000). AP1, CAL, FUL all activate transcription of LFY, directly 
or indirectly (Fig. 2; Ferrandiz et al., 2000). The complex genetic 
interactions among these genes reflects their membership in the 
AP1 family, which in higher angiosperms consists of two clades, 
euAP1 (in which Arabidopsis AP1 and CAL fall) and euFUL (to which 
FUL belongs; Litt and Irish, 2003). The euFUL clade underwent a 
duplication event to generate two subclades: euFUL1, including 
FUL, and euFULII, including Arabidopsis AGL79. This genetic and 
evolutionary complexity makes it difficult to determine the functional 
ortholog(s) of AP1 acting in meristem identity in other angiosperms.

The SEP1-4 MADS box proteins have roles in floral meristem 
identity, floral organ identity and ovule identity (Pelaz et al., 2000; 
Pelaz et al., 2001a; Pelaz et al., 2001b; Favaro et al., 2003; Ditta et 
al., 2004). They physically interact with other MADS box transcription 
factors to form ternary complexes that regulate gene expression 
(Honma and Goto, 2001; Jack, 2001). SEP3 has been shown to 
be especially important for floral meristem identity (Castillejo et al., 
2005) and regulates expression of other floral meristem identity 
genes, including itself, as well as SEP4, CAL, AP1, LMI1, LMI2 
and LFY (Kaufmann et al., 2009). SEP3 interacts physically with 
AP1 and is present in transcriptional complexes with it (Sridhar et 
al., 2006; Immink et al., 2009). Not surprisingly, many targets of 
AP1 and SEP3 overlap.

Two other MADS box transcription factor encoding genes,  
AGL24 and SVP, also function as floral meristem identity genes. 
These genes have been shown to be important for several aspects 
of reproduction in Arabidopsis (Hartmann et al., 2000; Yu et al., 
2002; Michaels et al., 2003; Yu et al., 2004a; Lee et al., 2007a; 

Fig. 2. Floral meristem identity genes mutually regulate each other. The network was visual-
ized using the BioTapestry program (Longabaugh et al., 2009). LEAFY (LFY) activates transcription 
of many other floral homeotic genes and is regulated by them in turn.

Lee et al., 2007b; Liu et al., 2007; Gregis et al., 
2008; Liu et al., 2009; Grandi et al., in press). 
Their roles in controlling flowering time are best 
known, where they play opposing roles, with 
AGL24 promoting the floral transition while SVP 
acts to repress flowering (Hartmann et al., 2000; 
Michaels et al., 2003). More recent work has 
revealed that these two genes act redundantly 
to promote flower identity once the reproductive 
transition has occurred (Gregis et al., 2008). 
AGL24 and SVP act together with AP1 in this 
process; the triple mutant agl24-2; svp-41; ap1-
10 has a phenotype reminiscent of that of apl-1; 
cal1-1, suggesting some redundancy in function 
among these genes. Similar genetic interactions 
between these genes and LFY have also been 
shown, further confirming the role of AGL24 and 
SVP in promoting flower identity (Grandi et al., in 
press). These transcription factors also directly 
activate LFY and AP1 (Grandi et al., in press). 
SVP and AGL24 also act redundantly with AP1 
to repress B and C homeotic genes during stage 
1 and 2 of flower development (Gregis et al., 
2006; Gregis et al., 2008; Gregis et al., 2009), 
important for proper floral patterning.

In addition to the genes discussed above, two 
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genes originally identified as direct targets of LFY, LMI1 and LMI2, 
also function in floral meristem identity. An lmi1 mutant enhances 
the meristem defects of the weak lfy-10 allele (Saddic et al., 2006). 
lmi1 mutants have very subtle meristem defects. LMI1 acts upstream 
of CAL and together with LFY regulates CAL expression directly 
(Fig. 2; Saddic et al., 2006). Its expression is activated by both AP1 
and SEP3 in addition to LFY (William et al., 2004; Kaufmann et 
al., 2009; Kaufmann et al., 2010). lmi2 mutants similarly enhance 
the phenotypes of the lfy-10 allele. LMI2 acts together with LFY to 
activate expression of AP1, therefore operating in a feed forward 
loop to positively regulate floral meristem identity (Fig. 2; Pastore 
et al., 2011). Similarly to LMI1, the transcription of LMI2 is also 
dependent on SEP3 and AP1 (William et al., 2004; Kaufmann et 
al., 2009; Kaufmann et al., 2010).

A very recent publication demonstrates the complex regulatory 
network among the floral meristem identity genes  AP1, CAL, AGL24, 
SVP, LMI1 and LFY (Fig. 2; Grandi et al., in press). LFY acts to 
repress AGL24 and SVP transcription, although this appears to 
be an indirect activity. LFY’s direct target and co-factor LMI1 acts 
to positively regulate these two genes. AGL24 and SVP directly 
activate transcription of both LFY and AP1. Clearly, the interactions 
between floral meristem identity genes involve multiple feedback 
loops, both positive and negative. 

In Arabidopsis, the IM remains indeterminate and does not 
form a terminal flower. This is due at least in part to the activity of 
TFL1 in the IM. AP1 and LFY repress TFL1 expression in floral 
meristems, suppressing IM fate (Fig. 2; Liljegren et al., 1999; Parcy 
et al., 2002). TFL1 in turn suppresses the expression of AP1 and 
LFY in the IM (Ratcliffe et al., 1998). The balance between these 
genes is what regulates shoot architecture (Bradley et al., 1997). 
In fact, during the domestification of soybean (Glycine max), 
mutant alleles of the GmTFL1 gene were selected because they 

conferred a determinate growth habit, an agronomically important 
trait (Tian et al., 2010). 

LEAFY: a master regulator of flowering

LFY was first recognized for its function in flower meristem 
development. Although expression can be detected weakly in 
leaves, LFY expression is highest in floral meristems, where it is 
found throughout the early primordium with earliest accumulation 
before cell groups have begun to separate from the IM (Weigel 
et al., 1992). Later in floral development (starting at stage 3), 
expression begins to decline in the center of the flower. At stage 
6, when the carpel primordia emerge, LFY is detected in incipient 
petals, stamens and pistil and persists until stage 9, after which 
it is not detected. lfy mutants are slightly late flowering, produce 
extra cauline leaves and have abnormal floral-like structures in 
which there is homeotic transformation of floral organs to leaf-
like structures (Fig. 3 B,D,F; Schultz and Haughn, 1991; Huala 
and Sussex, 1992; Weigel et al., 1992). Conversely, constitutive 
expression of LFY under the 35S promoter causes the conversion 
of indeterminate lateral meristems into flowers and the conversion 
of the IM into a flower (Fig. 3 G,H; Weigel and Nilsson, 1995). LFY 
expression is directly regulated by AP1, AGL24, SVP and SEP3 
(Fig. 2; Wagner et al., 1999; Kaufmann et al., 2009; Grandi et al., 
in press; Winter et al., 2011).

LFY encodes a plant specific transcription factor (Weigel et 
al., 1992) with a DNA binding domain that is structurally related 
to helix-turn-helix domains (Hamès et al., 2008). In addition to 
the conserved DNA binding domain, located at the C-termini of 
LFY-like proteins, an N-terminal domain of unknown function is 
also conserved (Fig. 4; Maizel and Weigel, 2004). Unlike many 
other transcription factors that have evolved by gene duplication 

Fig. 3. LEAFY (LFY) is a floral meristem identity gene. Micrographs of Arabidopsis plants and flowers. (A) Wild type plant. (B) lfy-6 plant. Numbers 
indicate cauline leaves with subtending branches along the primary stem. (C) Top of wild type inflorescence. (D) Top of lfy-6 inflorescence. (E) Wild 
type flower. (F) lfy-6 mutant flower. Note partially spiral phyllotaxy in (f). (G,H) 35S::LFY plants. White arrows indicate bracts, red arrows indicate par-
tially fused carpel-like organs, yellow arrowhead indicates leaf-like sepals, blue arrows indicate terminal flowers and white arrowheads indicate single 
flowers formed in place of branches.
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Fig. 4. LEAFY and its orthologs contain two conserved domains. Amino acid alignment of selected LFY orthologs from across land plants. The 
conserved N-terminal region is marked with a red bar. The conserved DNA binding domain is marked with a blue bar. Dots indicate gaps introduced to 
optimize the alignment. Identical amino acids are indicated by red shading and similar amino acids by orange shading. The alignments were generated 
using the MUSCLE3.8.31 multiple alignment tool, using default settings (Edgar, 2004). At, Arabidopsis thaliana; Pt, Populus trichocarpa; Vv, Vitis vinifera; 
FALSIFLORA. Solanum lycopersicon LFY ortholog; FLO, Antirrhinum majus LFY ortholog; RFL, Oryza sativa LFY ortholog; Nymod, Nymphea odorata; 
PRFLL, Pinus radiata LFY ortholog; Wel, Welwitschia mirabilis; Cr, Ceratopteris thalictroides; Sel, Selaginella moellendorfi; Pp, Physcomitrella patens.
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to form multigene families (Riechmann and Ratcliffe, 2000), LFY is 
present as a single copy in most of the angiosperms. This makes 
LFY unique among transcription factors in plants. The LFY gene 
is conserved throughout land plant species, from bryophytes (the 
moss Physcomitrella patens) to flowering plants (Maizel et al., 2005). 
Studies done using species across the land plants demonstrated 
that the ability to complement the Arabidopsis lfy mutant decreases 
as the evolutionary difference from Arabidopsis increases and that 
this is due to changes in the DNA binding specificity of the more 
distantly related proteins (Maizel et al., 2005). In moss, the LFY 
orthologs PpLFY1 and PpLFY2 regulate the first division of the 
zygote (Tanahashi et al., 2005). It is hypothesized that LFY -like 
genes had an ancestral role in controlling cell division activity and 
placement of new cells (Moyroud et al., 2010). In gymnosperms 
and angiosperms, LFY-like genes are associated with reproductive 
structure formation (cones and flowers, respectively). 

The importance of LFY in reproductive development across 
angiosperms and its expression in cones in gymnosperms has 
informed many evo-devo studies. In the gymnosperm Pinus radiata 
two paralogous LFY-like genes have been identified: PRFLL and 
NEEDLY (NLY) (Mellerowicz et al., 1998; Mouradov et al., 1998). 
The presence of two paralogs in most gymnosperms seems to be 
the rule, although at least one species (Gnetum gnemon) does not 
have a NLY-like gene; at the base of the angiosperms, the NLY-like 
gene disappeared and only the PRLL-like gene persisted (Albert 
et al., 2002). In P. radiata, PRFLL expression is restricted to male 
cones while NLY expression is mostly confined to the female cones; 
both are also expressed in vegetative meristems (Mellerowicz et 
al., 1998; Mouradov et al., 1998). This difference in expression and 
lack of NLY orthologs in angiosperms lead to a hypothesis about 
the evolutionary origin of flowers from cones, termed the “mostly 
male theory” (Frohlich and Parker, 2000). This theory postulates that 
the bisexual flower arose from male cone-like structures bearing 
ectopic ovules in hypothetical ancestral plants. However, the LFY 
orthologs from Gnetum parvifolium and Picea abies are expressed 
in seed bearing cones (Shindo et al., 2001; Carlsbecker et al., 
2004). In a broad survey across the gymnosperms it was found 
that both LFY-like and NLY-like genes are expressed in both pollen 
and seed cones (Vazquez-Lobo et al., 2007). Thus, the presence 
or absence of LFY or NLY does not explain the development of 
bisexual flowers, although it does not disprove the “mostly male” 
theory. Other theories for the origin of the flower have postulated 
that spatial changes in B class MADS box genes (Theissen et 
al., 2000; Theissen and Becker, 2004) or concerted changes of 
LFY, LFY co-factors and MADS box genes (Baum and Hileman, 
2006) could underlie the transition to hermaphroditic flowers. The 
absence of LFY-like gene expression in apical meristems that are 
undergoing more sustained indeterminate growth in gymnosperms 
such as Picea and its presence in those meristem that form re-
duced numbers of ovule-bearing scales such as Podocarpus does 
suggest that LFY-like genes confer determinate growth, similar to 
its function in angiosperm flowers (Vazquez-Lobo et al., 2007).

Although control of flower development is the core function of 
LFY genes in angiosperms, in some species additional roles have 
been acquired. Several of the gymnosperm LFY-like genes are 
expressed vegetatively, supporting the idea that non-reproductive 
functions maybe ancestral. Some of these functions include in-
volvement in SAM development in tobacco (Ahearn et al., 2001), 
compound leaf development in legumes (Hofer et al., 1997) and 

tomato (Molinero-Rosales et al., 1999) and panicle branching in 
rice (Kyozuka et al., 1998). In addition, recent evidence suggests 
that Arabidopsis LFY functions during vegetative growth to regu-
late plant defense pathways (Winter et al., 2011). A recent review 
has highlighted the diverse roles of LFY orthologs across the 
angiosperms (Moyroud et al., 2009). We will concentrate on floral 
development in this review. LFY plays two main roles in flowering, 
which are both temporal and genetically separable (Parcy et al., 
1998). Firstly, LFY acts as a meristem identity regulator and acti-
vates other important floral meristem identity regulators. During this 
phase of activity, LFY regulates phyllotaxy in the flower as well as 
organ number. Secondly, LFY is necessary for activation of floral 
organ identity genes and genes involved in floral morphogenesis. 
LFY also is necessary to maintain FM identity.

As a DNA binding transcription factor, LFY can act as a tran-
scriptional activator as well as a transcriptional repressor (Wagner 
et al., 1999; William et al., 2004; Winter et al., 2011). However, 
LFY does not seem to have either activation or repression activ-
ity on its own (Parcy et al., 1998; Busch et al., 1999), suggesting 
that it is dependent on co-factors for its activity, as does the fact 
that LFY regulates some of its target genes in only a subset of its 
spatial and temporal expression domain (see below). LFY regulates 
gene expression by recognizing pseudopalindromic sequence ele-
ments (CCANTGT/G) in the promoters of its target genes (Parcy 
et al., 1998; Busch et al., 1999; Wagner et al., 1999; Lohmann 
et al., 2001; Lamb et al., 2002). The crystal structure of the LFY 
C-terminus bound to DNA showed that the DNA binding domain 
has a compact fold composed of two short b-strands followed by 
seven helices connected by short loops showing base-specific 
contacts with both the major and minor grooves of the DNA (Hamès 
et al., 2008). This has more accurately defined the LFY binding 
sequence as T/ANNNNCCANTGG/TNNNNT/A (with the center of 
the pseudopalindrome underlined; (Hamès et al., 2008). This motif 
has the previously defined consensus as the core. Several recent 
papers have also observed this expanded consensus sequence 
(Moyroud et al., 2011; Winter et al., 2011).

LFY and floral meristem identity

LFY is necessary for flower formation; however, it is not es-
sential for the reproductive transition and bolting. Flowering time 
and bolting is slightly delayed in lfy mutants, but this delay is 
relatively minor (Blázquez et al., 1997). LFY expression is first 
detectable in leaf primordia at a very low level and increases until 
a certain threshold is reached; once the threshold is reached, the 
primordia are specified as flowers. In other words, the level of 
LFY in the plant is the trigger to produce flowers (Blázquez et al., 
1997; Hempel et al., 1997). Thus, when the number of copies of 
LFY is altered, timing of flower formation is changed (Blázquez et 
al., 1997). The level of LFY reflects the quantity and the quality of 
different flowering signals the plant perceives (Lee et al., 2008). 
Previous studies done on flowering time mutants show that in 
many late flowering mutants, LFY expression is delayed, while in 
early flowering mutants, its expression is accelerated (Nilsson et 
al., 1998). Since LFY has been shown to be downstream of all the 
known pathways that control flowering time (Blázquez et al., 1998; 
Nilsson et al., 1998; Aukerman et al., 1999), expression of the other 
key meristem identity gene in Arabidopsis, AP1, is observed only 
after the floral transition has been initiated (Mandel et al., 1992; 
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Simon et al., 1996; Hempel et al., 1997) and LFY is a direct acti-
vator of AP1 transcription (Wagner et al., 1999) as well as other 
meristem identity genes, it is thought that LFY is the key player in 
the floral transition (Fig. 2). However, AP1’s role in Arabidopsis is 
obscured by the presence of CAL and FUL, as discussed above. 

Loss of LFY function causes lateral meristems that would normally 
make flowers to instead produce cauline leaves and associated 
lateral shoots (Fig. 3B; Schultz and Haughn, 1991; Huala and 
Sussex, 1992; Weigel et al., 1992). Eventually lfy plants will form 
structures that have both shoot-like and flower-like characteristics 
and consist of many leaf-like organs and abnormal carpels in a 
partially spiral phyllotaxy (Fig. 3F; Schultz and Haughn, 1991; Huala 
and Sussex, 1992; Weigel et al., 1992). This is due to the fact that, 
in Arabidopsis, later-arising flowers have only a partial requirement 
for LFY because AP1 can become activated independently of LFY 
(Huala and Sussex, 1992; Bowman et al., 1993; Wigge et al., 2005). 
lfy mutant flower-like structures are often subtended by bracts that 
normally are suppressed in Arabidopsis, demonstrating that LFY 
also controls this aspect of floral morphology in Arabidopsis (Fig. 
3D; Schultz and Haughn, 1991; Huala and Sussex, 1992; Weigel 
et al., 1992). 

The role of LFY in specifying lateral meristems as flowers 
depends on its direct activation of the transcription of other floral 
meristem identity genes (Fig. 2 and Table 1). In addition, other 
targets of LFY are likely to be involved in floral specification and/
or determining aspects of floral morphology such as a whorled ar-
rangement of organs, pedicel (the stem that connects the flower to 
the inflorescence stem) length and orientation, correct organ number 
and suppression of internode elongation. For the purposes of this 
review, we have defined LFY target genes as those loci that have 
been identified in at least two independent experiments, including 
whole genome level chromatin immunoprecipitation (ChIP) and/
or by at least two independent experimental techniques (such as 
ChIP and microarray, for example). LFY controls expression of 
a wide variety of genes, reflecting its roles in multiple aspects of 
floral architecture. LFY has recently been shown to be necessary 
for the reduced cortical cell elongation at the adaxial side of the 
pedicel base (Yamaguchi et al., in press). This suppression is 
necessary to prevent Arabidopsis flowers from bending down. At 
least some of this function of LFY is mediated by its activation of 
the ASYMMETRIC LEAVES2 (AS2) gene (Table 1; Yamaguchi 
et al., in press). An interesting category of LFY targets are those 
involved in auxin biosynthesis, transport and signaling (Table 1). 
Auxin flux is temporally and spatially correlated with FM develop-
ment and its control is necessary for FM formation (Blázquez et 
al., 2006; Heisler et al., 2005; Liu et al., 2009). LFY represses 
transcription of the PIN4 gene, encoding an auxin efflux carrier 
(Table 1; Friml et al., 2002). PIN proteins are the rate-limiting step 
in polar auxin transport (Petrasek et al., 2006). Inhibiting auxin 
efflux from the incipient floral meristem would allow auxin accu-
mulation and meristem outgrowth. In addition, disruptions in polar 
auxin transport have been shown to result in flowers with reduced 
numbers of floral organs as well as defective organs (Nemhauser 
et al., 2000). LFY may control floral organ number in part by 
inhibition of PIN4 expression. LFY also binds to the regulatory 
regions of AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 
(AIL6), encoding partially redundant AP2/ERF family transcription 
factors (Table 1). ANT and AIL6 are known to impact floral meri-
stem initiation and floral meristem patterning through regulation 

of auxin physiology during floral development (Krizek, 2011). LFY 
also targets genes involved in organ growth and polarity, such as 
GIF1 (Lee et al., 2009) and FILAMENTOUS FLOWER (FIL; Sawa 
et al., 1999a; Sawa et al., 1999b). Tissue polarity is also known to 
be correlated with FM development (Blázquez et al., 2006). FIL 
encodes a YABBY transcription factor expressed on the abaxial 
side of young FMs (Sawa et al., 1999b; Siegfried et al., 1999) and 
when mutations in this gene are combined with either lfy or ap1 
mutants, FM defects are enhanced (Sawa et al., 1999a). A target of 
LFY transcriptional activation, ETTIN (ETT; Table 1), which encodes 
an AUXIN RESPONSE FACTOR (ARF3), is known to affect organ 
polarity through regulation of the abaxial fate promoting KANADI 
genes (Pekker et al., 2005). Thus, LFY directly regulates compo-
nents of auxin signaling, organ polarity and a factor that links both. 
In addition, LFY also targets the GA pathway, which is known to 
regulate LFY expression (Blázquez and Weigel, 1999; Eriksson et 
al., 2006; Achard et al., 2007) and be necessary for proper organ 
growth (Mutasa-Gottgens and Hedden, 2009). Another target of 
LFY, AtTLP8/LMI5 (William et al., 2004; Winter et al., 2011), is 
enriched in the quiescent center of the root (Nawy et al., 2005), 
suggesting it has general functions in stem cells. 

Other floral meristem identity genes also regulate a number 
of LFY target genes, consistent with their molecular and genetic 
interactions. Expressing both LFY and SEP3 together outside of 
the flower can induce formation of floral organs, suggesting they 
act together (Castillejo et al., 2005). Analysis of SEP3 target genes 
has revealed that this gene also regulates auxin homeostasis and 
that, furthermore, its targets have an enrichment of auxin response 
elements (ARF binding sites) in their regulatory region (Kaufmann 
et al., 2009). This is consistent with the phenotypic consequences 
of expression of a SEP3-EAR fusion protein that represses target 
gene expression. In the flowers of these plants there are fewer, 
smaller organs. One interesting common target of SEP3 and LFY 
is ETT (Table 1). LFY and SEP3 were shown to physically interact 
using in vitro GST-immunoprecipitation assay (Table 2; Liu et al., 
2009). This suggests that LFY and SEP3 act together in common 
transcriptional complexes to regulate gene expression and that 
some of the targets of these complexes are auxin-related genes. 
AP1 also shares a number of target genes with LFY and SEP3 
(Table 1), including other floral meristem identity genes such as 
LMI1 and LMI2 and SEP3 (Fig. 2 and Table 1) as well as auxin 
and GA related genes and those involved in organ polarity. SEP3 
has been shown to physically interact with AP1 in so-called MADS 
box protein quartets (Honma and Goto, 2001; Jack, 2001; Pelaz et 
al., 2001a), suggesting that LFY, AP1 and SEP3 may be in some 
common transcriptional complexes.

As mentioned above, LFY functions to suppress bract forma-
tion. However, it is unclear what genes it targets to perform this 
function. At least four other genes are known to have roles in bract 
suppression: BLADE ON PETIOLE1 (BOP1), BOP2, PUCHI and 
UNUSUAL FLORAL ORGANS (UFO). BOP1 and BOP2 encode 
proteins containing ankyrin repeats and BTB/POZ domains and are 
thought to function in protein-protein interactions. They belong to 
the NONEXPRESSOR OF PR GENES1 (NPR1) family of proteins 
and are partially redundant with one another. Genetically, they act 
together with LFY to inhibit the growth of bracts (Norberg et al., 
2005). BOP1 and BOP2 have been demonstrated to interact with 
the TGA transcription factor PERIANTHIA (PAN), although it is 
unclear if PAN is involved in bract suppression (Hepworth et al., 
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Locus ID Gene Name Type of protein Regulation by LFY References 

At1g16070 AtTLP8/ LMI5 TUBBY family transcription factor Activated (William et al., 2004; Winter et al., 2011) 

At1g19850 MP/ ARF5/ IAA24 ARF family transcription factor NDg (Moyroud et al., 2011) 

At1g24260a,b SEP3/ AGL9 MADS box transcription factor Activated (Moyroud et al., 2011; Winter et al., 2011) 

At1g25560a,b TEM1/ EDF1 RAV family transcription factor  Activatedh  

At1g26310a,e CAL/ AGL10 MADS box transcription factor Activated (Wagner et al., 2004; William et al., 2004) 

At1g30040a GA2OX2 Gibberellin 2-oxidase Activated (Wagner et al., 2004; Moyroud et al., 2011) 

At1g31140 GOA/ AGL63 MADS box transcription factor ND (Moyroud et al., 2011) 

At1g59870 PEN3/ PDR8 ATP binding cassette transporter ND (Winter et al., 2011) 

At1g59940 ARR3 Type A response regulator ND (Moyroud et al., 2011) 

At1g65620 AS2 Transcriptional repressor characterized by cysteine repeats and a leucine 
zipper 

Activated (Yamaguchi et al., in press) 

At1g69120a,b,d,i AP1 MADS box transcription factor Activated (Wagner et al., 1999; Moyroud et al., 2011; 
Winter et al., 2011) 

At1g80340 GA30X2 Gibberellin 3 β-hydroxylase ND (Moyroud et al., 2011) 

At2g01420a,b PIN4 Auxin efflux carrier Repressedh (Moyroud et al., 2011; Winter et al., 2011) 

At2g03710a,b SEP4/ AGL3 MADS box transcription factor Activated (Moyroud et al., 2011; Winter et al., 2011) 

At2g28610a,b PRS/ WOX3 WUSCHEL-like homeodomain transcription  ND (Moyroud et al., 2011) 

At2g33860a,b ETT/ ARF3 ARF family transcription factor Activated (Winter et al., 2011; Wagner et al., 2004) 

At2g34650a PID/ ABR Serine/ threonine kinase ND (Moyroud et al., 2011; Winter et al., 2011) 

At2g45190b FIL/ AFO/ YAB1 YABBY transcription factor ND (Winter et al., 2011; Moyroud et al., 2011) 

At2g45660a,b SOC1/ AGL20 MADS box transcription factor ND (Moyroud et al., 2011) 

At3g47340 ASN1/ DIN6 Glutamine-dependent asparagine synthase  Activated (Wagner et al., 2004; William et al., 2004) 

At3g54340a,b,f AP3 MADS box transcription factor Activated (Lamb et al., 2002; Winter et al., 2011) 

At3g58070b GIS C2H2 transcription factor ND (Moyroud et al., 2011) 

At3g61250a,b LMI2/MYB17 R2R3 MYB transcription factor Activated (William et al., 2004; Winter et al., 2011) 

At3g63010a,b GID1B Gibberellin receptor ND (Moyroud et al., 2011; Winter et al., 2011) 

At3g63530 BB E3 ubiquitin ligase ND (Moyroud et al., 2011) 

At4g18960a,c AG  MADS box transcription factor Activated (Busch et al., 1999; Moyroud et al., 2011; 
Winter et al., 2011) 

At4g35900a,b FD/ bZIP14 bZIP transcription factor ND (Moyroud et al., 2011; Winter et al., 2011) 

At4g36260 STY2/ SRS2 RING finger-like zinc finger transcription factor ND (Winter et al., 2011; Moyroud et al., 2011) 

At4g37750 ANT/ CKC1/ DRG AP2/ERF-type transcription factor ND (Moyroud et al., 2011; Winter et al., 2011) 

At5g03790a,b LMI1/ATHB51 Homeodomain leucine zipper class I transcription factor Activated (William et al., 2004) Winter et al., 2011) 

At5g03840b TFL1 Phosphatidylethanolamine- binding protein belonging to CETS gene family Repressed (Winter et al., 2011; Moyroud et al., 2011) 

At5g10510b AIL6/ PLT3 AP2-domain transcription factor ND (Winter et al., 2011; Moyroud et al., 2011) 

At5g11320 YUC4 Flavin monooxygenase ND (Moyroud et al., 2011; Winter et al., 2011) 

At5g11530b EMF1 Histone H3-K27 methylase Repressed (Winter et al., 2011) 

At5g15230a GASA4 Gibberellin-regulated protein with redox activity Activated (Wagner et al., 2004; Moyroud et al., 2011) 

At5g20240a PI MADS box transcription factor Activated (Winter et al., 2011) 

At5g28640b AN3/ GIF1 Transcriptional coactivator ND (Moyroud et al., 2011; Winter et al., 2011) 

At5g46330a FLS2  Leucine-rich repeat serine/threonine protein kinase Activatedh (Winter et al., 2011) 

At5g49770 LMI3 Leucine-rich repeat serine/threonine protein kinase Activated (William et al., 2004) 

At5g53950 CUC2/ ANAC098 NAC family transcription factor Activatedh (Wagner et al., 2004; Winter et al., 2011) 

At5g60630 LMI4 Expressed protein Activated (William et al., 2004) 

At5g61850a,b.i LFY Plant specific transcription factor Activated (Winter et al., 2011; Moyroud et al., 2011) 

TABLE 1

SUMMARY OF LFY TARGET GENES

LFY targets were defined in the following ways: the gene had to be identified in at least two independent publications or by at least two independent experimental techniques or both. aAlso SEP3 targets 
(Kaufmann et al., 2009); bAlso AP1 targets (Parcy et al., 1998; Ng and Yanofsky, 2001; Lamb et al., 2002; Kaufmann et al., 2010; Winter et al., 2011); cAlso WUS target (Lenhard et al., 2001; Lohmann 
et al., 2001); dAlso LMI2 target (Pastore et al., 2011); eAlso LMI1 target (Saddic et al., 2006); fAlso UFO target (Chae et al., 2008); gND, no data; hGenevestigator (lfy-12 vs. Col dataset; (Zimmermann 
et al., 2004; Zimmermann et al., 2005); iAlso AGL24/SVP targets (Grandi et al., in press).

2005). BOP1 and BOP2 inhibit bract growth, at least in part, by 
repression of expression of the JAGGED (JAG) and JAGGED-LIKE 
(JGL) genes, which encode C2H2 transcription factors. To date, 
neither JAG nor JGL has been demonstrated to be targets of LFY. 
BOP1 and BOP2 have also been shown to promote expression 
of LFY and AP1 (Karim et al., 2009; Xu et al., 2010). The AP2 
family transcription factor PUCHI has overlapping functions with 
BOP1/2 in bract suppression and also in promoting LFY and AP1 
expression (Karim et al., 2009), suggesting that upregulation of 
these floral meristem identity genes is essential for the inhibition 
of bract growth. Interestingly, PUCHI has been identified as a 

putative direct target of LFY, although this has not been confirmed 
(Moyroud et al., 2011). Finally, the F-box encoding gene UFO has 
also been shown to work jointly with LFY in floral meristem identity 
and suppression of bracts (Hepworth et al., 2006). UFO has been 
shown to be a LFY co-factor in the regulation of floral organ identity 
genes (Table 2; Lee et al., 1997; Chae et al., 2008).

Regulation of floral homeotic genes by LFY

After initiating the meristem identity switch, LFY has a second 
role in flower development through transcriptional activation of all 
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four classes of the floral organ identity genes (Fig. 5 and Table 
1; Weigel and Meyerowitz, 1994). SEP3 and AP1 also regulate 
many of these genes (Table 1) and may act in common regulatory 
complexes with LFY. As mentioned above, some LFY target genes 
function in GA signaling. In addition to its role in floral initiation, 
GA signaling also activates floral homeotic gene expression (Yu et 
al., 2004b), suggesting that LFY may act through these targets to 
regulate these genes in addition to its direct effects on their tran-
scription. LFY directly activates AP1 (Wagner et al., 1999), which 
in addition to its function in floral meristem identity also functions 
as an A class gene in Arabidopsis (Irish and Sussex, 1990). The 
other classical A class gene, AP2, is not directly regulated by LFY. 
LFY also activates the E class genes SEP3 and SEP4 (Table 1), 
necessary for specification of all four whorls of the flower (Pelaz 
et al., 2000; Ditta et al., 2004). 

LFY plays an especially important role in activation of the B class 
genes, as reflected in the complete absence of petals and stamens 
in an lfy null mutant (Fig. 3). It directly activates the expression 
of the B class genes APETALA3 (AP3) and PISTILLATA (PI; Fig. 
5 and Table 1; Lamb et al., 2002; Winter et al., 2011). AP1 also 
regulates these genes (Ng and Yanofsky, 2001; Kaufmann et al., 
2010). However, LFY requires co-factors to activate B class genes, 
as it has been shown to be unable to do so on its own unless fused 
to a strong transcriptional activation domain (Parcy et al., 1998). 
The F-box encoding gene UFO was originally identified for its 
roles in establishing the whorled phyllotaxy within the flower, floral 
determinacy and activating AP3 and PI (Ingram et al., 1995; Levin 

and Meyerowitz, 1995; Wilkinson and Haughn, 1995). At stages 2 
and 3 of flower development, UFO is expressed in a domain that 
includes the presumptive petal and stamen primordia (Ingram 
et al., 1995) and UFO activity is necessary for organ identity at 
these stages (Laufs et al., 2003). Subsequent work showed that 
UFO activity is dependent on LFY and that both LFY and UFO are 
necessary for expression of AP3 outside of the flower; this data 
lead to the proposal that UFO acts as a LFY co-factor to activate B 
class gene expression (Lee et al., 1997). UFO is an F-box protein 
(Ingram et al., 1995; Samach et al., 1999). F-box proteins form part 
of SCF ubiquitin ligase complexes that polyubiquitinate proteins, 
targeting them for destruction via the 26S proteasome (Sullivan 
et al., 2003; Wang et al., 2003; Ni et al., 2004). UFO has been 
shown to interact with components of SCF complexes and these 
complex members function in flower development (Samach et al., 
1999; Zhao et al., 1999; Wang et al., 2003; Ni et al., 2004) and 
regulate B class gene expression (Zhao et al., 2001). A model was 
proposed whereby UFO functioned in an SCF complex to mediate 
ubiquitination of a negative regulator of AP3 expression (Samach 
et al., 1999). Subsequently, UFO was shown to physically interact 
with LFY both in vitro and in vivo (Chae et al., 2008), leading to 
the current model that UFO is involved in modifying LFY in order 
to enhance its transcriptional activity (Chae et al., 2008). Similar 
activities for F-box proteins have been reported previously in yeast 
and mammals (Muratani and Tansey, 2003). UFO orthologs in 
petunia and rice [DOUBLE TOP (Souer et al., 2008) and ABER-
RANT PANICLE ORGANIZATION1 (APO1; Ikeda-Kawakatsu et 
al., 2012), respectively] have been shown to physically interact with 
their respective LFY orthologs (ABERRANT LEAF AND FLOWER 
and RFL/APO2, respectively), suggesting that the dependence 
of LFY on F-box regulation for some of its activity is conserved 
across angiosperms.

LFY directly activates the class C gene AG (Busch et al., 
1999). However, LFY is not absolutely required for its expres-
sion as lfy mutants have detectable amounts of AG (Weigel and 
Meyerowitz, 1993) and still make abnormal carpels (Fig. 3). UFO 
has been shown activate AG transcription in cooperation with 
LFY (Wilkinson and Haughn, 1995; Souer et al., 2008). AG is 
necessary not only for stamen and carpel identity, but also for 
floral determinacy. WUSCHEL (WUS) is one of the key genes 
involved in maintaining stem cell populations of shoot meristems 

Fig. 5. Floral organ identity is controlled by multiple feedback loops. The network was visualized using the BioTapestry program (Longabaugh et 
al., 2009). LFY controls A, B, C and E class floral homeotic gene expression. Regulatory interations between floral homeotic genes are not shown to 
emphasize LFY’s regulatory role.

Locus ID Gene Name Encoded protein 
Experimental 
evidence References 

At1g24260 SEP3 MADS box transcription 
factor 

GST pull-down (Liu et al., 2009) 

At1g30950 UFO F-box protein EMSA; 
GST pull-down; 
Y2H; co-IP; 
co-ChIP 

(Chae et al., 2008) 

At3g61250 LMI2/AtMYB17 R2R3 MYB transcription 
factor 

GST pull-down; 
Y2H; BiFC 

(Pastore et al., 2011) 

TABLE 2

SUMMARY OF LFY CO-FACTORS

LFY co-factors were defined as proteins that have been demonstrated to physically interact with 
LFY. EMSA, electromobility shift assay; Y2H, yeast two-hybrid; co-IP, co-immunoprecipitation; 
co-ChIP, co-chromatin immunoprecipitation; BiFC, bimolecular fluorescence complementation.
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and encodes a homeobox transcription factor (Laux et al., 1996; 
Mayer et al., 1998). In stage 6 flowers the termination of WUS 
expression causes floral meristem termination (Lenhard et al., 2001; 
Lohmann et al., 2001). In addition, WUS functions as a co-factor 
of LFY in regulating expression of AG in the inner whorls (Fig. 
5). LFY and WUS bind very closely together on AG cis-elements 
but do not physically interact with each other (Busch et al., 1999; 
Lenhard et al., 2001; Lohmann et al., 2001; Hong et al., 2003). 
Both LFY and WUS have to be present on the promoter to activate 
transcription (Lohmann et al., 2001). WUS is expressed only in 
the center of the meristem (Mayer et al., 1998), giving spatial 
specificity to the activation of AG. In turn, AG functions to repress 
WUS expression, therefore terminating floral meristem division. To 
date, only one other common target gene of LFY and WUS has 
been identified, although its regulation by these genes has not 
been confirmed. Both transcription factors are putative regulators 
of HAP3B (Busch et al., 2010; Winter et al., 2011). HAP3B is a 
CCAAT-binding transcription factor that has been implicated in 
regulation of flowering time (Cai et al., 2007; Chen et al., 2007). 
Its role in the floral meristem has not been investigated. Another 
activator of AG transcription, the TGA transcription factor PAN, 
may function with LFY (Fig. 5; Das et al., 2009; Maier et al., 2009). 
LFY and PAN both bind to binding sites in the AG second intron 
to promote AG expression and a lfy mutation enhances the floral 
defects of pan mutations, suggesting PAN may act as a co-factor 
of LFY, although it is unknown if they act in the same complexes 
(Das et al., 2009; Maier et al., 2009). Other transcription factors 
are likely to function in regulation of floral homeotic gene expres-
sion. For example, two BELL1-like homeodomain transcription 
factors, PENNYWISE (PNY) and POUND-FOOLISH (PNF), have 
been shown to act in parallel to LFY, UFO and WUS to regulate 
AP3 and AG (Yu et al., 2009).

In addition to these transcription factors, LFY interacts with 
epigenetic factors to regulate its homeotic gene targets. SPLAYED 
(SYD) interacts with LFY to regulate B class gene expression. SYD 
is a member of the Snf2p ATPase family of chromatin remodeling 
factors. It was identified though a genetic screen done to isolate 
enhancers of weak lfy mutant phenotypes (Wagner and Mey-
erowitz, 2002). It acts in the LFY-dependent activation of AP3 and 
PI expression (Wagner and Meyerowitz, 2002), as well as other 
LFY-related functions as well as other developmental processes 
(Kwon et al., 2005; Kwon et al., 2006; Bezhani et al., 2007) and 
stress responses (Walley et al., 2008). A recent genome level study 
of LFY target genes identified potential LFY co-factor motifs from 
a de novo bioinformatic motif analysis (Winter et al., 2011). Two 
such motifs, GA-repeat hexamers and octamers, were proposed 
to help recruit stage specific LFY co-factors. This type of repeats 
is often found in Polycomb Responsive Elements (PREs). The first 
plant polycomb protein indentified, CURLY LEAF (CLF), was found 
because of its function in repressing AG, PI and AP3 expression 
in leaves (Goodrich et al., 1997) and AG in the inflorescence 
stem and the first two whorls of the flower (Goodrich et al., 1997; 
Schubert et al., 2006). EMRYONIC FLOWER 2 (EMF2) and FER-
TILIZATION INDEPENDENT ENDOSPERM (FIE), which are also 
PcG proteins, repress AP3, PI and AG during vegetative growth 
(Chen et al., 1997; Kinoshita et al., 2001; Yoshida et al., 2001). 
TFL2, also known as LIKE-HETEROCHROMATIN PROTEIN 1 
(LHP1), is expressed in proliferating cells of meristems, includ-
ing in the FM, and binds to chromatin marked with H3K27me3 

(Turck et al., 2007; Zhang et al., 2007). TFL2 directly associates 
with regulatory regions of AP3, PI, AG and SEP3 and represses 
their expression during vegetative growth (Kotake et al., 2003; 
Zhang et al., 2007). A plant specific factor, EMF1 (Aubert et al., 
2001), also acts, together with EMF2-containing PcG complexes, 
to repress AG, AP3 and PI expression during vegetative develop-
ment (Calonje et al., 2008; Kim et al., 2010); interestingly, EMF1 
is a direct target of LFY (Table 1), which represses its expression, 
suggesting LFY might derepress floral homeotic gene expression 
as well as directly activating it. Clearly, LFY must cooperate and 
interact with a range of epigenetic enzymes and markers in order 
to correctly regulate its target genes.

LFY and floral reversion

Once the transition to flower formation has occurred, it is im-
portant to maintain this status to prevent floral reversion and lead 
to successful reproduction. Floral reversion is the reinitiation of 
shoot growth from a partially formed flower and was first described 
in 1880 (Buckhout, 1880). As discussed above, one mechanism 
Arabidopsis uses to prevent reversion is positive feedback loops 
among the floral meristem identity genes (Fig. 2). In Arabidopsis, 
floral reversion has been observed in floral meristem identity 
mutants including lfy and ap1 under the noninductive short day 
photoperiod (Huala and Sussex, 1992; Bowman et al., 1993; 
Okamuro et al., 1996; Liu et al., 2007). This phenotype is partially 
due to the inappropriate expression of three genes with roles in 
flowering time regulation, AGL24, SVP and SUPPRESSOR OF 
CONSTANS1 (SOC1); (Yu et al., 2004a; Liu et al., 2007), which 
all encode MADS box transcription factors. Overexpression of 
AGL24 promotes the transformation of FMs into IMs, overexpres-
sion of SOC1 further enhances this and overexpression of SVP 
converts FMs into vegetative shoots (Yu et al., 2004a; Liu et al., 
2007). Loss of function mutants in these three genes individually 
or in combination reduces reversion defects seen in ap1 mutants 
(Liu et al., 2007). It has been shown that AP1 binds directly to 
promoters of these genes and represses their expression (Fig. 
2; Liu et al., 2007; Gregis et al., 2008). LFY also may directly 
regulate SOC1 (Table 1; Moyroud et al., 2011) and acts indirectly 
through AP1 to repress the other genes (Yu et al., 2004a; Gregis 
et al., 2008). SEP genes also function to prevent floral reversion. 
Chromatin immunoprecipitation has shown that SEP3 directly 
binds to the promoters of both AGL24 and SVP (Gregis et al., 
2008). sep mutants have AGL24 and SVP expressed in the FM 
beyond their normal time of expression. This data suggests that 
SEPs act as repressors of AGL24 and SVP to maintain FM identity. 
Another putative target of LFY activation (Table 1), shared with 
both AP1 and SEP3, is the TEM1/EDF1 gene, encoding a RAV 
family transcription factor with a novel transcriptional repression 
domain (Ikeda and Ohme-Takagi, 2009). TEM1 represses the 
flowering time gene FT, contributing to floral transition (Castillejo 
and Pelaz, 2008). Clearly, an important function of floral meristem 
identity genes is to repress, directly or indirectly, expression of 
flowering time genes in later stage flowers to maintain floral fate.

LFY and floral organ differentiation

LFY expression persists into floral development stages during 
which organ differentiation is beginning, suggesting it could func-
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tion to regulate genes involved in organ morphogenesis (Weigel 
et al., 1992). This is further supported by the defects seen in the 
carpels made in strong lfy loss of function mutants (Fig. 3). In lfy 
mutant flower-like structures, the carpels are partially unfused, 
revealing the ovules, and the stigma and style are reduced. In 
support for a role of LFY in pistil differentiation, several of its puta-
tive direct target genes have been demonstrated to be necessary 
for this developmental process. These include ETT, necessary for 
proper apical-basal patterning of the carpels in response to auxin 
(Sessions and Zambryski, 1995; Sessions et al., 1997; Sessions, 
1997; Nemhauser et al., 2000). Another putative LFY target, STY2, 
encoding a member of the SHI family of ring finger proteins, is 
redundantly necessary with other family members for the growth 
of the marginal tissues of the gynoecium (Kuusk et al., 2006). The 
CUP-SHAPED COTYLEDON2 (CUC2) NAC transcription factor 
is redundantly necessary (with CUC1) for fusion of the septa of 
the carpels (Ishida et al., 2000). Finally, GOA/AGL63, encoding a 
paralog of the B-sister MADS box transcription factor found only 
in Brassicaceae, is necessary for regulation of fruit growth (Erd-
mann et al., 2010; Prasad et al., 2010). ETT and CUC2 also have 
earlier roles in floral development and more work will be needed 
to determine if their regulation by LFY is important for earlier floral 
development events, pistil morphogenesis or both. LFY target 
genes also function in other morphogenetic events within the 
flower. For example, GA is important for stamen filament growth 
(Peng, 2009) and its signaling is also regulated by LFY. Likely LFY 
directly controls genes involved in morphogenesis of most, if not 
all, floral organs.

Conclusions

LFY is necessary for the formation of flowers across the angio-
sperms and its orthologs in gymnosperms are also implicated in 
regulation of reproductive development. LFY functions to control 
multiple aspects of floral development, including organ number and 
identity, organ arrangement and floral meristem termination. It does 
this by acting in multiprotein transcriptional complexes to regulate 
gene expression. Studies in Arabidopsis are providing insight into 
reproductive development that can be applied to other plants. LFY 
expression promotes early flowering in a number of commercially 
important crops, including rice (Oryza sativa) and poplar (Populus 
trichocarpa) (Kyozuka et al., 1998; Rottmann et al., 2000). Therefore 
unraveling the molecular mechanisms by which LFY performs its 
functions will provide a basis for the development of new strate-
gies to increase agronomical values such as increased yield by 
manipulating LFY in economically important crops.
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