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Preface

What scientists would like to tell you about reprogramming (if only they knew!)

In a famous Science editorial entitled "Will society be prepared?", Nobel Laureate Marshall Nirenberg
envisioned the possibility that cells would be "programmed with synthetic messages within 25 years"
(Nirenberg, 1967). Whether Nirenberg held messenger RNAs as such capable of (re)programming cells, is not
known, but clearly he considered them as instrumental to achieve (re)programming.

Back in 1967 the term "programming" may have sounded new (it was probably taken from junior computer
science). However, in biology the concept behind the terms "programming" and "reprogramming" was already
familiar to entomologists (Willis, 1969; Kastern and Krishnakumaran, 1975). In the 1970s and 1980s, the term
"reprogramming" reached vertebrates in the context of amphibian nuclear transfer (Hoffner and DiBerardino,
1977) and human-mouse heterokaryon experiments (Chiu and Blau, 1984). Oddly, in mice, the term
"programming" came subsequent to "reprogramming" (McCue and Sherman, 1982).

The term reprogramming can indicate a natural change of cell fate, or an artificial change of gene
expression imposed via an experiment. Gurdon and Simonsson define two types of experimental reprogram-
ming: nuclear and cellular (Gurdon and Simonsson, 2003). Accordingly, nuclear reprogramming stands for
"changes in gene activity that are induced experimentally by introducing nuclei into a new cytoplasmic
environment" (Gurdon and Simonsson, 2003). This can be achieved by nuclear injection into an oocyte, or
by fusion of a whole cell with an oocyte or with a pluripotent cell such as an embryonic stem (ES) cell. When
the differentiation state of a whole cell is changed, without invasive micromanipulation, into one characteristic
of a different cell type, this is referred to as direct reprogramming of a cell (Mitalipov and Wolf, 2009). It was
not until the year 2006 that Nirenberg’s vision became reality as Yamanaka and colleagues forced mouse
fibroblasts to become induced pluripotent stem (iPS) cells by expressing the messages of four genes: Oct4,
Sox2, Klf4 and c-Myc (Takahashi and Yamanaka, 2006). In fact, the Yamanaka experiment opened the path to
exceed Nirenberg’s prediction, in that the requirement for messages (mRNAs) could be overcome by
deploying the protein products of those messages (Zhou et al., 2009).

In our role as guest editors of this Special Issue of The International Journal of Developmental Biology (Int. J. Dev.
Biol.), we attempted to summarize the state of the art in the field of reprogramming by asking some leading
scientists for their opinions. There are certainly multiple ways to structure an editorial that intends to
introduce the topic of reprogramming (as it would be overambitious to think about, let alone pursue, all
questions about reprogramming in only one Special Issue!). Therefore we have selected three of the many
possible questions, and explain why, in our view, these questions should rank high on the reprogramming wish-
list.

Natural programming and basic principles of reprogramming
The overarching question in the broad field of reprogramming is whether different mechanisms are

responsible for different methods of reprogramming. It is conceivable that cell reprogramming as seen in ES
and iPS cells is more reliant on cell surface receptors and signaling pathways compared to nuclear transfer into
oocytes. The role of signaling pathways is also apparent in the reprogramming that is observed when
primordial germ cells (PGCs) and spermatogonia are cultured in vitro to give rise to embryonic germ (EG) and
germline pluripotent stem (gPS) cells, respectively (Resnick et al., 1992; Matsui et al., 1992; Ko et al., 2009). It
is still unclear if DNA replication is necessary for reprogramming to occur. Results of ES cell fusion
experiments argue that DNA replication and cell division are not required for reprogramming (Do and
Schöler, 2004), similar to the case of nuclear transplantation into the germinal vesicle of Xenopus oocytes and
of the most recent mouse-human heterokaryon experiments (Bhutani et al., 2010). Reprogramming in iPS
cells appears to benefit from accelerated cell divisions (Hanna et al., 2009), suggesting that DNA replication
and cell division may be not be neutral or dispensable in this context after all, and that reprogramming
methods operate in different ways.
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Animal cloning
To many, it remains questionable whether the mammalian oocyte can perform reprogramming to a full

extent, since the existence of any normal e.g. healthy clones has often been disputed. Primordial oocytes grow
in the ovary for 19 days (mouse) and 3 months (human) to form one of the largest cells of the body and the only
one that will become totipotent when fertilized. Oocytes have probably the highest amounts of reprogramming
factors, which they can exchange with the nucleus very quickly (Catez et al., 2004). In turn, these factors may
override preexisting circuits that hinder fast reprogramming of somatic nuclei. These circuits are not equally
refractory to be reprogrammed across somatic cell types, some cell types being easier to reprogram than others.
Considering that ES, EG and iPS cells do not exist in vivo, whereas oocytes do, reprogramming by oocytes is the
best model to follow when it comes to understanding the natural mechanisms of reprogramming. It has been
proposed that oocytes can be used for reprogramming even if they are of suboptimal or poor quality. This
possibility is particularly appealing in humans, where paucity of fresh human oocytes can be offset, in part, with
the use of oocytes discarded from Assisted Reproductive Technology (ART) programs after fertilization failure
or thawing of zygotes that were stored in liquid nitrogen for too long to be safely implanted: the technique for
nuclear transfer in zygotes has been worked out (Greda et al., 2006; Egli et al., 2007). However, even with an
increased supply of oocytes, the method of nuclear transfer requires special skills and it is not amenable to
substantial upscaling in humans, while the situation is more promising in farm species. The availability of ES and
EG cells provides the second most effective means to induce pluripotency by fusion with somatic cells, after
nuclear transfer into oocytes. Unlike the nuclear transfer method, cell fusion has been applied successfully in
humans to derive pluripotent cell lines (Cowan et al., 2005; French et al., 2008; Fan et al., 2011). However,
technical problems remain with this technique since the somatic genome of the donor cell and the pluripotent
genome of the host cell mingle after fusion, making it more difficult to conclude that the somatic component
was stably reprogrammed, compared to other experimental settings in which the nuclei do not mingle (e.g.
heterokaryon). Efforts are underway to remove the ES cell chromosomes selectively from the fusion hybrids
(Matsumura et al., 2007). The answer to the question of whether an oocyte can achieve full reprogramming is
pending, but one may wonder which system can accomplish full reprogramming if the oocyte cannot.

Cell reprogramming
Lastly, we put forward the question of how reprogramming can be assessed independently of the generation of

a cloned animal. From the pluripotency perspective, the gold standard of ultimate reprogramming is the formation
of a complete organism containing functional cells of every kind (Gurdon and Melton, 2008). However this is not
only problematic to achieve in humans, but it entails more than potency: it entails also epigenesis that is, the ability
to build structured multicellular complexity in which the properties of the whole exceed the mere sum of the
individual cell properties (see Denker 2009 for deeper reflections on the significance of pattern formation to cell
potency). For practical purposes, it is not strictly required that the differentiation possibilities have to build a whole
organism in order to prove that the reprogrammed cell was pluri/totipotent; and reprogramming may be complete
also if it accomplishes a full, stable transition from one cell lineage to another, without necessarily going through
a naive state of pluri/totipotency (Vierbuchen et al., 2010).

From the studies that have been mentioned in this preface, it appears that programming and reprogramming
can be part of the normal life cycle, that experimental reprogramming can be accomplished by more or less
invasive means, and that the reprogrammed cell state can vary with regard to the spectrum of differentiation
possibilities (potency). We would like to end this preface by wholeheartedly thanking the Editor in Chief of The
International Journal of Developmental Biology and his editorial team, the board of reviewers, and the authors. There
are other scientists in the field, besides those who joined this Special Issue, who would be worth asking for their
opinions on reprogramming. It is however hard to convey the views and research of all those working in the field,
in one single volume. We are proud of the work done, and trust that our readers will share our view that this
Special Issue takes, albeit not yet the full path, a significant step in the direction of deepening current knowledge
on reprogramming.
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Our special thanks to the following reviewers in particular: Konstantinos Anastassiadis, Daniel Besser, Tobias Cantz, Cristina Cardoso, Philippe Collas,
Peter de Boer, Irina Eberle, Telma C. Esteves, Keisuke Kaji, Jason Knott, K. John McLaughlin, Michael Meisterernst, Gloria Perez, Pablo Ross, Stefan Schlatt,
Arndt Siekmann, Giuseppe Testa, Mathias Treier, Guangming Wu and Mylene Yao.



 EGF, epithelium and

References

BHUTANI, N., BRADY, J.J., DAMIAN, M., SACCO, A., CORBEL, S.Y., BLAU, H.M. (2010). Reprogramming towards pluripotency requires AID-dependent DNA
demethylation. Nature 463:1042-1047.

CATEZ, F., YANG, H., TRACEY, K.J., REEVES, R., MISTELI, T., BUSTIN, M. (2004). Network of dynamic interactions between histone H1 and high-mobility-group proteins
in chromatin. Mol Cell Biol. 24:4321-4328.

CHIU, C.P., BLAU, H.M. (1984). Reprogramming cell differentiation in the absence of DNA synthesis. Cell 37:879-887.

COWAN, C.A., ATIENZA, J., MELTON, D.A., EGGAN, K, (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369-
1373.

DENKER, H.W. (2009). Induced pluripotent stem cells: how to deal with the developmental potential. Reprod Biomed Online. 19 Suppl 1:34-37.

DO, J.T., SCHÖLER, H.R. (2004). Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22:941-949.

EGLI, D., ROSAINS, J., BIRKHOFF, G., EGGAN, K. (2007). Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447:679-685.

FAN, Y., JIANG, Y., CHEN, X., OU, Z., YIN, Y., HUANG, S., KOU, Z., QING, L., LONG, X., LIU, J., LUO, Y., LIAO, B., GAO, S., SUN, X.F. (2011). Derivation of cloned
human blastocysts by histone deacetylase inhibitor treatment after somatic cell nuclear transfer with -thalassemia fibroblasts. Stem Cells Dev. Feb 15. [Epub ahead
of print]

FRENCH, A.J., ADAMS, C.A., ANDERSON, L.S., KITCHEN, J.R., HUGHES, M.R., WOOD, S.H. (2008). Development of human cloned blastocysts following somatic cell
nuclear transfer with adult fibroblasts. Stem Cells 26:485-493.

GREDA, P., KARASIEWICZ, J., MODLINSKI, J.A. (2006). Mouse zygotes as recipients in embryo cloning. Reproduction 132:741-748.

GURDON, J.B., BYRNE, J.A., SIMONSSON, S. (2003). Nuclear reprogramming and stem cell creation. Proc Natl Acad Sci USA. 100:11819-11822.

GURDON, J.B., MELTON, D.A. (2008). Nuclear Reprogramming in Cells. Science 322: 1811-1815

HANNA, J., SAHA, K., PANDO, B., VAN ZON, J., LENGNER, C.J., CREYGHTON, M.P., VAN OUDENAARDEN, A., JAENISCH, R. (2009). Direct cell reprogramming is
a stochastic process amenable to acceleration. Nature 462:595-601.

HOFFNER, N.J., DIBERARDINO, M.A. (1977). The acquisition of egg cytoplasmic non-histone proteins by nuclei during nuclear reprogramming. Exp Cell Res. 108:421-
427.

KASTERN W.H., KRISHNAUKUMARAN A (1975). Reprogramming in the absence of DNA synthesis in Galleria larval epidermis. Cell Diff. 4:45–53.

KO, K., TAPIA, N., WU, G., KIM, J.B., BRAVO, M.J., SASSE, P., GLASER, T., RUAU, D., HAN, D.W., GREBER, B., HAUSDÖRFER, K., SEBASTIANO, V., STEHLING,
M., FLEISCHMANN, B.K., BRÜSTLE, O., ZENKE, M., SCHÖLER, H.R. (2009). Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5:87-
96.

MATSUMURA, H., TADA, M., OTSUJI, T., YASUCHIKA, K., NAKATSUJI, N., SURANI, A., TADA, T. (2007). Targeted chromosome elimination from ES-somatic hybrid
cells Nat Methods 4:23-25.

MATSUI, Y., ZSEBO, K., HOGAN, B.L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841-847.

McCUE, P.A., SHERMAN, M.I. (1982). Effect of antimetabolites on programming of inner cells of the mouse blastocyst. J Exp Zool. 224:445-450.

MITALIPOV, S., WOLF, D.P. (2009). Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol. 114:185-199.

NIRENBERG, M.W. (1967). Will society be prepared? Science 157: 633.

RESNICK, J.L., BIXLER, L.S., CHENG, L., DONOVAN, P.J. (1992). Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550-551.

TAKAHASHI, K., YAMANAKA, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676.

VIERBUCHEN, T., OSTERMEIER, A., PANG, Z.P., KOKUBU, Y., SÜDHOF, T.C., WERNIG, M. (2010). Direct conversion of fibroblasts to functional neurons by defined
factors. Nature 463:1035-1041.

WILLIS, J.H. (1969). The programming of differentiation and its control by juvenile hormone in saturniids. J Embryol Exp Morphol. 22:27-44.

ZHOU, H., WU, S., JOO, J.Y., ZHU, S., HAN, D.W., LIN, T., TRAUGER, S., BIEN, G., YAO, S., ZHU, Y., SIUZDAK, G., SCHÖLER, H.R., DUAN, L., DING, S. (2009).
Generation of induced pluripotent stem cells using recombinant proteins.nCell Stem Cell 4:381-384.


