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XRASGRP2 is essential for blood vessel formation
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ABSTRACT Ras guanyl nucleotide-releasing protein 2 (RASGRP2), one of the Ras guanine
exchange factors, is implicated as a critical regulator of inside-out integrin activation in human
lymphocytes, neutrophils and platelets. However, the activities of this protein in endothelial cells
remain unclear. In the current study, we identify a physiological function in blood vessel formation
for XRASGRP2, which is the Xenopus ortholog of mammalian RASGRP2. XRASGRP2 over-
expression induced ectopic vascular formation, and XRASGRP2-knockdown embryos showed
delayed vascular development. We also investigated the upstream signaling of XRASGRP2 in
endothelium formation. XRASGRP2 expression was up-regulated in the presence of VEGF-A and
down-regulated following VEGF-A depletion. XRASGRP2 knockdown abolished the ectopic
induction of endothelial cells by VEGF-A in the posterior ventral blood island. These results
suggest that XRASGRP2 is essential for vascular formation during Xenopus development.
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Introduction

Vascular and hematopoietic cells are thought to arise from a
common progenitor, the hemangioblast. In Xenopus, primitive red
blood cells are produced exclusively in the ventral blood island (VBI),
whichis functionally equivalentto the extra-embryonic yolk sac blood
island in mammals. The embryonic endothelial cells arise synchro-
nously with the primitive red blood cells in the VBI. The close spatial
and temporal relationships between the blood cells and endothelial
cells support the hypothesis that they have a bipotential precursor,
the hemangioblast (Sabin, 1920; Murray, 1932). However, the
developmental mechanism underlying the differentiation of endothe-
lial and primitive blood cells from the hemangioblast remains unclear.

Vascular endothelial growth factors (VEGFs) are key regulatorsin
vasculogenesis and angiogenesis (Ferrara et al., 2003). In particular,
VEGF-A is involved in the regulation of processes required for
angiogenesis, i.e., endothelial cell activation, proliferation, migration,
and tubule formation (Ferrara et al., 2003). In Xenopus, the VEGF-
A gene is alternatively spliced to produce the VEGF122, VEGF170,
and VEGF190 isoforms, which are equivalent to murine VEGF120,

VEGF164, and VEGF188, respectively (Cleaver et al., 1997). Ec-
topic expression of VEGF122 changes the architecture of the devel-
oping vascular network (Cleaver et al., 1997). Over-expression of
VEGF170 induces the inhibition of expression of the hematopoietic
genes o-globin and GATA-1 in the posterior blood island, as well as
the excessive production of endothelial cells (Koibuchi et al., 2006).

Signaling through Ras is one of the intracellular pathways down-
stream of VEGF stimulation (Doanes et al., 1999; Hood et al., 2003;
Meadows et al., 2001). Genetic ablation of either SOS, which
encodes a Ras guanine nucleotide exchange factor, or NF1, which
encodes a Ras GTPase-activating protein, results in cardiovascular
defects (Brannan et al., 1994; Henkemeyer et al., 1995; Wang et al.,
1997). K-ras-deficient mice die having multiple defects, including
defects of the hematopoietic and cardiovascular systems (Johnson
et al., 1997; Koera et al., 1997). Targeted deletion of NF1 in
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endothelial cells leads to multiple cardiovascular defects (Gitler et
al., 2003). The small GTPase Raplb is required for normal angio-
genesis and plays arole in the regulation of pro-angiogenic signaling
in endothelial cells (Chrzanowska-Wodnicka et al., 2007).
RasGRP2/CalDAG-GEFI is a member of the CalDAG-GEF/
RasGRP family of intracellular signaling molecules involved in the
activation of the Ras superfamily (Kawasaki et al., 1998; Springett
etal., 2004). RasGRP2 contains binding sites for Ca2* and DAG, and
a GEF domain that predominantly activates Rapl (Kawasaki et al.,
1998). Recently, RasGRP2 was identified as a critical regulator of
inside-out integrin activation in human T lymphocytes, neutrophils,
and platelets (Pasvolsky et al., 2007). RasGRP3 is expressed in
embryonic blood vessels and newly formed vessels during preg-
nancy and tumorigenesis in adults. RasGRP3 expression is up-
regulated by VEGF stimulation of endothelial cells (Roberts et al.,

2004). In Xenopus, XRASGRPZ2is expressed in the vascular region
of the embryo (Nagamine et al., 2008).

Inthe present study, we reveal the role of XRASGRP2 in Xenopus
vascular development by showing that: 1) over-expression of
XRASGRP2 induces ectopic endothelial cell differentiation; 2)
XRASGRP2-knockdown embryos show reduction or delay of endot-
helial cell differentiation; and 3) XRASGRPZ2 expression is induced
by VEGF-A signaling. Our findings indicate that XRASGRP2 is
essential for vascular development in downstream of VEGF-A sig-
naling in Xenopus embryos.

Results

XRASGRP2 expression is restricted in Xenopus developing
vessels

Previously, it was shown that Xenopus laevis RASGRP2
(XRASGRP2) is expressed in the vascular regions of stage 35
embryos (Nagamine etal., 2008). We examined in detail XRASGRP2
expression during vascular development. XRASGRP2 mRNA was
found to be expressed in vascular regions, such as the anterior
cardinal vein (ACV), aortic arch (AA), intersomitic vein (ISV), poste-
rior cardinal vein (PCV), and vascular vitelline network (VVN) at stage
30(Fig. 1A). The expression levels of XRASGRP2ZmRNAinthe ACV,
AA, and ISV were reduced at stage 35 (Fig. 1B). At stage 40,
XRASGRP2 expression was restricted to the PCV and VVN (Fig.
1C). In contrast, the expression of Ami, which is a vascular-specific
gene, was detected inthe ACV, AA, and VVN, but notin the ISV and
PCV, at stage 30 (Fig. 1D). At stage 35, expression of Ami was
detectedinthe ACV, AA, ISV, PCV, and VVN (Fig. 1E). These results

XRASGRP2

PCV
Ami

4 \ /VZVN ‘\ ) \?VN ~ VVN
Inj(-)

Fig. 1 (Left). XRASGRP expression precedes Ami expression. (A) XRASGRP2 transcripts localized in the anterior cardinal vein (ACV), aortic arch
(AA), intersomitic veins (ISV), posterior cardinal veins (PCV), and vascular vitelline network (VVN) at stage 30. (B) XRASGRP2 expression is detected
in the PCV and VVN at stage 35. Lines indicate the positions of the sections shown in (G-J). (C) At stage 40, XRASGRP2 expression is restricted to
the PCV and VVN. (D) The expression of Ami is weakly detected in the ACV, AA, and VVN at stage 30. (E) Ami expression is evident in the ACV, AA,
ISV, PCV, and VVN at stage 35. Lines indicate the positions of the sections shown in (K-N). (F) Ami expression is detected continuously in the PCV,
ISV, and VVN until stage 40. (G-J) Histologic section of the embryo shown in (B). (K-N) Histologic section of the embryo shown in (E). Both XRASGRP2
and Ami are expressed in the endothelial cells (PCV and VVN).
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Fig. 2 (Right). Ectopic expression of XRASGRPZ2 affects vascular formation and induces edema. (A) An uninjected control embryo at stage 43.
(B) Anembryo in which 1 ng of XRASGRP2 mRNA was injected into the dorsal vegetal blastomeres (DV) at the 8-cell stage. The embryo shows edema.
(C-F) Whole-mount in situ hybridization for a hematopoietic marker, globin T3, and an endothelial marker, Xmsr, at stage 31. (C) The expression of
globin T3 in an uninjected control embryo (ventral view). (D) Expression of globin T3 in an embryo that was co-injected with XRASGRP2 and B-
galactosidase (B-gal) into the ventral vegetal blastomeres (VV) at the 8-cell stage. The expression of globin T3 is abolished at the injection site in the
VBI. (E) The expression of Xmsr in an uninjected control embryo (ventral view). (F) The expression of Xmsr in an embryo that was co-injected with
XRASGRP2 and B-gal into the VV. Ectopic expression of Xmsr is evident at the injection site in the VBI. Arrowheads indicate Xmsr-positive cells.
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suggest that the expression of XRASGRPZ is transient and occurs
earlier than the expression of Ami in developing vascular regions.
Examination of the sections of the stage 35 embryos showed that
both XRASGRPZ2 and Amiwere strongly expressed in the VVN and
PCV (Fig. 1 G-N). The expression of Amiwas reducedinthe ACV and
AA at stage 40 (Fig. 1F).

Over-expression of XRASGRP2 induces ectopic expression of
Xmsr

We examined the function of XRASGRPZ in vascular develop-
ment. XRASGRP2 mRNA and fB-galactosidase (B-gal) mMRNA
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Fig. 3. XRASGRP2 depletion results in

aberrant development of blood ves-
sels. (A) Schematic model for the splice
inhibition antisense morpholino oligo-
nucleotides (S-MOs). The binding site of
MO is represented by a bolded blue line.
Arrows indicate the primers used in the
RT-PCR to examine the efficacies of the
S-MOs. (B) The control MO (c, 40 ng), aS-
MO (aS, 40 ng), bS-MO (bS, 40 ng), and S-
MO (S, 40 ng, comprising 20 ng aS-MO
plus 20 ng bS-MO) were injected into 2-
cell-stage embryos, andthe embryos were
analyzed by RT-PCR at stage 30. The
presence of the 312-bp band indicates
amplification of the normally spliced
mRNA. The intensity of this band is re-
duced in both the aS-MO-injected and bS-
MO-injected embryos, as compared to
the uninjected embryos and control MO-
injected embryos, and this band is not
detected for the S-MO-injected embryos.
This indicates that the S-MO-injected
embryos do not produce a functional
XRASGRP2 protein. -, Sample without
reverse transcriptase, ‘un’, uninjected em-
bryos. (C-F) Expression patterns of blood
vessel marker genes. The 2-cell-stage
embryos were injected with the control
MO (40 ng) or S-MO (40 ng) into one
blastomere (corresponding to the future
right-hand side), and harvested at stage
31. The injected sides are indicated as
[Inj(+)] and the uninjected sides are indi-
cated as [Inj(-)]. The expression levels of
Xflk-1 in the PCV (C, red arrows) and of
Xmsr in the ISV (D, black arrows) are
diminishedin the S-MO-injected side. The
expression levels of Xtie2 (E) and Ami (F)
in the PCV (red arrows) and VVN (red
arrowheads) are diminished in the S-MO-
injected side. The expression level of Ami
(F) is greatly reduced in the S-MO-in-
jected side. No differences are seen in
the control MO-injected embryos. (G)
The expression of Ami in VVN is gradually
mitigated in the S-MO-injected side. (H)
Expression of globin T3 in the control
MO-injected embryos. S-MO injection
. does not affect the level of globin T3
S-MO Ami expression.

were injected into dorsal-vegetal (DV) or ventral-vegetal (VV)
blastomeres at the 8-cell stage. DV and VV blastomeres contain
components of future VBI cells. The injected embryos showed the
edema phenotype at the tail-bud stage, and this phenotype was
more severe at stage 43 (75%, n=56), as compared to uninjected
control embryos (6%, n=72) (Fig. 2 A,B). It was assumed that
over-expression of XRASGRPZ2influences cardiovascular devel-
opment. Whole-mount in situ hybridization revealed that the
expression of globin T3was suppressed in the VBI (Fig. 2D), and
that ectopic expression of Xmsr was induced (Fig. 2F) in the
XRASGRP2-injected embryos (Fig. 2 C,E). Xmsr, which is the
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Xenopus homolog of the G-protein-coupled receptor APJ, func-
tions as the apelin receptor. Xmsris expressed by endothelial
cells (Devic et al., 1996; Inui et al., 2006). These results indicate
that the over-expression of XRASGRPZ2 alters vascular and
hematopoietic cell fates, leading to the replacement of blood
cells with endothelial cells.

Knockdown of XRASGRP2 disrupts vascular development

The antisense XRASGRP2-MOs (aS-MO and bS-MO) were
designed to block splicing at the first exon/intron boundaries
(Fig. 3A, see Materials and Methods). These MOs inhibit the
normal splicing of XRASGRP2 pre-mRNA, resulting in the
production of a truncated protein that lacks the functional
domain. RT-PCR analysis revealed that the level of the nor-
mally spliced transcript (312-bp band) was reduced in aS-MO-
or bS-MO-injected embryos (Fig. 3B, lanes aS and bS). Nor-
mally spliced transcripts were not detected in the aS-MO and

Fig. 4. VEGF-A up-regulates XRASGRP2 expression. Embryos were injected with either 1 ng of
VEGF-A mRNA or 20 ng of VEGF-A-MO into the two dorsal-ventral blastomeres (DV) or the two ventral-
vegetal blastomeres (VV), together with 200 pg of B-gal mRNA, at the 8-cell-stage. These embryos were
prepared for whole-mountin situ hybridization of XRASGRP2 at stage 32. (A-E) Lateral view. (F-1) Ventral
view. (A) An uninjected embryo. (B,G) An embryo in which VEGF-A mRNA was injected into the DV.
(C). An embryo in which VEGF-A mRNA was injected into the VV. (D) An embryo in which VEGF-A-
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r s N ;

MO was injected into the DV. (E) An embryo in which VEGF-
A-MO was injected into the VV. (F) An uninjected embryo. (H)
An embryo in which the control MO (20 ng) was injected into
the DV. Black arrows indicate inhibition of XRASGRP2 ex-

Y aam™ s J pression in the VVN (D,E) and VBI (l). Black arrowheads
7 gk, > indicate ectopic expression of XRASGRP2 in the VVN (B,C)
DV 4 VV and VBI(G).
VEGFA-MO

bS-MO co-injected embryos (Fig. 3B, lane S). These
results indicate that aS-MO and bS-MO effectively
inhibit XRASGRP2 gene splicing and production of
the intact protein. To investigate the role of
XRASGRPZin normal vascular development, a mix-
ture of XRASGRP2-MOs (S-MO) was injected into
one side of the 2-cell-stage embryos. The embryos
were fixed at stage 31, to analyze the expression
levels of the vascular-specific marker genes Xflk-1,
Xmsr, Xtie2, and Ami (Fig. 3 C-F). The expression
levels of Xflk-1 and Xmsr were reduced in the PCV
and ISV, respectively (Fig. 3 C,D, arrows), and the
expression levels of Xtie2 and Amiwere suppressed
in the PCV and VVN (Fig. 3 E,F, arrows and arrow-
heads) of the S-MO-injected sides. The suppression of Ami
expression at the S-MO-injected side was gradually mitigated
as the embryos developed (Fig. 3G). The S-MO-injected em-
bryo showed no significant changes in globin T3 expression
under the conditions used in the present study (Fig. 3H).

VEGF-A signaling regulates the expression of XRASGRP2
and acts through XRASGRP2 in vascular development
VEGF-A is a key factor in vasculogenesis and induces
endothelial gene expression. A functional analysis of VEGF in
Xenopus embryos was performed by injecting VEGF-A mRNA
or VEGF-A-MO into dorsal-vegetal blastomeres or ventral-
vegetal blastomeres at the 8-cell stage (Koibuchi et al., 2006).
We then examined the impact of signaling upstream of
XRASGRPZ2onvasculardevelopment. VEGF-AmRNA or VEGF-
A-MO was injected into dorsal-vegetal blastomeres or ventral-
vegetal blastomeres, together with §-gal mRNA, at the 8-cell
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Fig. 5. RasGRP2 mediates VEGF-A signaling. Embryos
were injected with 200 pg of B-gal mRNA (A,D), 1 ng of
VEGF-A mRNA (B,E) or 1 ng of VEGF-A mRNA plus 40 ng of
XRASGRP2 S-MO (C,F) into two ventral-vegetal blastomeres
at the 8-cell stage. The embryos were cultured until stage
31, for whole-mount in situ hybridization analysis. (A-C)
Expression patterns of globin T3. (D-F) Expression patterns
of Xmsr. VEGF-A inhibits globin T3 expression in the VBI.
Higher-magnification images showing the Xmsr expression
patterns in the VBI region are shown (lower panels). (B).

-

VEGF-A-mediated suppression of globin T3 expression is partially rescued by co-injection of the XRASGRP2 S-MO (C). VEGF-A induces ectopic Xmsr
expression in the VBI (E). VEGF-A-induced ectopic expression of Xmsr is partially rescued by co-injection of the XRASGRP2 S-MO (F).
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Fig. 6. A model for XRASGRP2 function in hemangioblast cells. (1)
The expression of XRASGRP2 is induced by VEGF-A in hemangioblast
cells. (2) XRASGRP2 reinforces the VEGF-A/Ras signal pathway. (3) The
stimulated hemangioblast cells differentiate to endothelial cells that
express Xmsr and Xtie2. In this case, differentiation to the hematopoietic
lineage is suppressed.

stage. The number of XRASGRPZ2-positive cells increased in
the area that was injected with VEGF-A mRNA (Fig. 4 B,C,G).
In contrast, XRASGRPZ2 expression was reduced in the VVN at
stage 32 in the VEGF-A-MO-injected embryos (Fig. 4 D,E,I,
arrow). These results indicate that VEGF-Ainduces XRASGRP2
expression, and that VEGF-A is required for XRASGRP2 ex-
pression. In the VEGF-A mRNA-injected embryos, ectopic
induction of endothelial cells that expressed Xmsr and inhibi-
tion of globin T3 expression were observed (Fig. 5 B,E). When
VEGF-A mRNA and the XRASGRPZ2 S-MO were co-injected,
the ectopic expression of Xmsrwas decreased (Fig. 5 E,F) and
the expression of globin T3 was patrtially rescued (Fig. 5 B,C).
These results suggest that VEGF signaling acts through
XRASGRP2 in vascular development.

Discussion

In humans, RasGRP2 has been identified as a critical regulator
of inside-outintegrin activation in T lymphocytes, neutrophils, and
platelets (Pasvolsky et al., 2007). In adult rodents, RasGRPZ2 is
expressed in platelets, megakaryocytes, and neutrophils within
the hematopoietic system, as well as in neurons, especially in the
striatum of the basal ganglia (Crittenden et al., 2004; Kawasaki et
al., 1998). The expression of XRASGRPZ2 in the developing
vascular system was reported in Xenopus (Nagamine et al.,
2008). This XRASGRPZ2 expression coincided with that of Xflk-1
and Xmsr, and occurred earlier than the expression of Ami.
XRASGRPZ2 expression was found to be transient in the develop-
ing vascular regions (Fig. 1) (Cleaver et al., 1997; Devic et al.,
1996; Inui and Asashima, 2006). These results indicate that
XRASGRP2 plays a role in the early phase of vasculogenesis.
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In the present study, the edema phenotype was observed for
both the up-regulation and down-regulation of XRASGRPZ2. Itwas
reported that VEGF-A overexpression induced edema (Koibuchi
et al., 2006). VEGF-A overexpression led to the formation of
ectopic blood vessels and reduced blood circulation. In contrast,
c-myc-knockdown embryos showed decreased vessel formation
and had the edema phenotype (Rodrigues et al., 2008). These
results indicate that an appropriate level and precise timing of
blood vessel formation are required for normal development.

The XRASGRP2-knockdown embryos showed the edema
phenotype, which may be due to circulation problems (data not
shown) and inhibition of endothelial gene expression (Fig. 3 C-F).
This outcome indicates that XRASGRPZ2 is necessary for endot-
helial differentiation. However, the delayed vessel formation
observed on the XRASGRP2-depleted side was gradually miti-
gated (Fig. 3G). This indicates that some other molecules partly
compensate for the lack of XRASGRP2 function. It has been
reported that RasGRP3 is expressed in endothelial cells in the
developing mouse embryo, although a loss-of-function mutation
in RasGRP3did not affect mouse embryo viability (Roberts et al.,
2004). Genetic ablation of Sos in the mouse resulted in death at
mid-gestation, with evidence of cardiovascular and yolk sac
defects (Qian etal., 2000; Wang et al., 1997). These orthologs are
candidates for the factors that compensate for the loss of
XRASGRP2 function in Xenopus vasculogenesis.

VEGF plays a central role in vascular development (Ferrara et
al., 2003). VEGF-A signaling is necessary and sufficient for
promoting early endothelial differentiation in Xenopus. Over-
expression of VEGF-A caused ectopic expression of XRASGRP2
(Fig. 4 B,C,G), similar to that of Xmsrand Xtie2 (Fig. 5, Koibuchi
etal., 2006). In addition, XRASGRP2 expression was suppressed
in VEGF-A-disrupted embryos (Fig. 4). The over-expression of
XRASGRPZ2resulted in ectopic expression of Xmsr, similar to the
over-expression of VEGF-A (Figs. 2and 4). Theseresults indicate
that VEGF-A is the endogenous upstream factor of XRASGRP2
in Xenopus endothelial cell differentiation.

The XRASGRP2 S-MO inhibited the ectopic expression of the
genes induced by VEGF-A over-expression (Fig. 5), which sug-
gests that XRASGRP2 is necessary for VEGF-A to induce endot-
helial cell differentiation. Therefore, the expression of XRASGRP2
is regulated by VEGF-A signaling, and the induced XRASGRP2
facilitates or maintains VEGF-A signaling for endothelial cell
differentiation. We propose a model for the function of RASGRP2
in vasculogenesis (Fig. 6). In hemangioblasts, the VEGF signal
induces XRASGRP2expression. XRASGRP2 directs the cell fate
towards the endothelial lineage. Since RasGRP is an activator of
members of the small GTPase family, such as Ras and Rapl,
these molecules are candidate targets of RASGRP2 in endothe-
lial differentiation. Further studies are required to elucidate the
role of XRASGRP2 in VEGF signal transduction and to identify the
target molecule of XRASGRP2 in vasculogenesis.

Materials and Methods

Plasmid constructs

The following constructs were generated for in vitro RNA synthesis:
pCS2P-XRASGRP2, which contains the ORF of Xenopus RASGRP2;
and pCS2-VEGF-A, which contains the ORF of Xenopus VEGF-Ab
(isoform 4, VEGF168, DQ481238). The plasmids were generated by PCR
amplification using the Phusion High Fidelity PCR Kit (Finnzymes, Fin-
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land) followed by subcloning into the pCS2+ vector (Turner and Weintraub,
1994).

Morpholino oligonucleotide design and validation

We obtained the sequences of the XRASGRP2a and XRASGRP2b
genes of X. laevis (corresponding to the pseudo-tetraploid genome) from
the database. Through prediction using the Xenopus tropicalis genomic
sequence, the following common primers for exons 1 and 3 of XRASGRP2a
and XRASGRPZ2b were generated:
forward, 5'-CTGATCTTGATAAGGGTCTCACCA-3';
reverse, 5-CTGTTTCCTTTGTTCTCCAG-3'. DNA fragments that en-
compassed intron 1, exon 2, and intron 2 were amplified from X. laevis
genomic DNA, and then sequenced. The following XRASGRP2 antisense
morpholino oligonucleotides (MOs) were designed based on the bound-
ary between exon 1 and intron 1: XRASGRP2a splice inhibition MO (aS-
MO), 5-CAGAACTTTAGAAGCCTTACCAAAG-3"; and XRASGRP2b
splice inhibition MO (bS-MO), 5'-AGAAATTTAGAACCCATACCGAAGC-
3'. The MOs were obtained from Gene Tools LLC. The effects of the MOs
were confirmed by RT-PCR using the above-mentioned XRASGRP2
common primers. VEGF-A-MO has been described previously (Kalin et
al., 2007).

Embryos and microinjection

Embryonic stage was determined according to the scheme of Nieuwk-
oop and Faber (Nieuwkoop and Faber, 1994). The jelly coat was removed
with Steinberg’s solution that contained 4% cysteine hydrochloride (pH
8.0). Microinjection was carried out according to the previously described
method (Chan et al., 2000). The -galactosidase (3-gal) MRNA was used
as alineage tracer. The -gal-injected embryos were processed for Red-
Gal staining (Research Organics), to reveal B-galactosidase activity.

Whole-mount in situ hybridization

Whole-mount in situ hybridization was performed as previously de-
scribed (Harland, 1991; Abe et al., 2004). Digoxigenin-labeled probes
were synthesized from linearized plasmids that encode Xflk-1 (Cleaver et
al., 1997), Xmsr (Devic et al., 1996), Xtie2 (Iraha et al., 2002), Ami (Inui
and Asashima., 2006), XRASGRPZ2, and globin T3 (Banville and Will-
iams, 1985).
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