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ABSTRACT  The Sox family of transcription factors is thought to regulate gene expression in a

wide variety of developmental processes. Here we describe the cloning of the X. laevis orthologs

of the SoxB2 family of transcription factors, sox14 and sox21. In situ hybridization revealed that

sox14 expression is restricted to the hypothalamus, dorsal thalamus, the optic tectum, a region

of the somatic motornucleus in the midbrain and hindbrain, the vestibular nuclei in the hindbrain

and a discrete ventral domain in the developing spinal cord. In contrast to the limited expression

domain of sox14, sox21 is found throughout the developing central nervous system, including the

olfactory placodes, with strongest expression at the boundary between the midbrain and

hindbrain.
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The Sox family of transcription factors belongs to the high mobility
group (HMG) superfamily of proteins. Originally classified to-
gether on the basis of at least 50% identity to the HMG domain of
SRY (Sox = Sry related HMG box) (Stevanovic et al., 1993),
subsequent phylogenetic analysis revealed this basis too strin-
gent (Bowles et al., 2000). Instead all Sox proteins share a
common motif within the HMG domain, RPMNAFMVW, and
cluster into 10 groups (A-J) (Bowles et al., 2000). While members
across groups bear little resemblance outside of the HMG do-
main, members within groups are similar both within and outside
of the HMG domain (Bowles et al., 2000). In addition to the HMG
domain, the Sox group B members also share a conserved group
homology domain located just C-terminal to the HMG domain
(Uchikawa et al., 1999, Bowles et al., 2000). The Sox group B has
been further divided into two subgroups, B1 and B2, based on
homology in the C-terminal domains (Uchikawa et al., 1999).
Furthermore, SoxB1 proteins have been demonstrated to acti-
vate transcription of the δ1-crystallin enhancer whereas the
SoxB2 proteins repress it (Uchikawa et al., 1999).

Sox proteins act in a wide range of developmental processes
with the Group B proteins acting in the development of the
nervous system. Specifically, SoxB1 proteins are generally thought
to be involved in maintaining a neural stem cell or progenitor
population. Functional analysis of chick Sox21 suggests that it
specifically counteracts SoxB1 proteins, and as a consequence,
promotes the progression of neurogenesis in the developing CNS
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(Sandberg et al., 2005). Recent analysis knocking down the
translation of Sox14 revealed disruption of hypothalamic pattern-
ing in zebrafish (Kurrasch et al., 2007).

Homologues of both Sox14 and Sox21 have been identified in
chick (Rex et al., 1997) and mouse (Hargrave et al., 2000) with
Sox21 also characterized in fish (De Martino et al., 1999). While
Sox21 is expressed broadly throughout the CNS in chick, mouse
and zebrafish, with marked expression in the midbrain-hindbrain
barrier, (Rex et al., 1997, De Martino et al., 1999, Uchikawa et al.,
1999), Sox14 expression is limited to discrete domains in the
nervous system in chick and mouse. In an effort to better under-
stand the role and regulation of SoxB2 proteins during
neurogenesis and to extend the phylogenetic analysis of the
SoxB2 subgroup, we have cloned the X. laevis orthologs of sox14
and sox21 and report their spatiotemporal expression patterns.

Isolation and sequence comparison of sox14 and sox21
A X. laevis clone containing 160 bp of sequence with homology

to the amino terminus of sox14 was obtained in a screen for HMG
containing homologs using a X. laevis genomic library. We used
inverse PCR to clone the remainder of the coding region of a gene

Abbreviations used in this paper: AM, abducens motornucleus; DT, dorsal
thalamus; HMG, high mobility group; OM, oculomotor motornucleus; OT,
optic tectum; TM, trochlear motornucleus; WISH, whole mount in situ
hybridization.
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whose predicted amino acid sequence exhibits a high degree of
conservation to orthologs of Sox14 (96% amino acids are con-
served with those in G. gallus, 94% in H. sapiens and M. musculus,
and 97% in X. tropicalis) as determined using ClustalW (Fig. 1).

Because vertebrate Sox group B genes do not contain introns
(Bowles et al., 2000), we isolated X. laevis sox21 from genomic
DNA using primers complementary to the 5’ coding region and the
3’ UTR of X. tropicalis sox21. We then employed inverse PCR to
obtain the 5’ coding region of X. laevis sox21 sequence. The
predicted ORF encodes a 262 amino acid protein which is highly
conserved with Sox21 proteins found in other vertebrates (Fig. 1,
90% amino acid conservation with G. gallus, H. sapiens and M.
musculus, and 96% with X. tropicalis). As expected, a high degree
of conservation to the HMG DNA binding domain and the group B

homology domain was seen for both Sox14 and Sox21 (Fig.1, blue
and pink lines, respectively). In the carboxyl terminal domain of
Sox21, notable features of conservation are the polyalanine
stretches characteristic of these proteins (marked with * in the
Figure). Interestingly, while Sox21 proteins from human, mouse,
chick and X. tropicalis have three polyalanine stretches, X. laevis
lacks the last stretch (Fig. 1B), and analysis of Sox21 proteins from
fish reveals that zebrafish and fugu have only the first polyalanine
stretch (data not shown).

We generated a phylogenetic tree using parsimony analysis
(PAUP* 4.0; Swofford et al., 2001). We used X. laevis Sox2 to root
the tree, although we obtained similar results when the tree was
rooted with either XlSox1 or XlSox3 (Fig. 2). Notably, the X. laevis
SoxB2 proteins cluster with previously identified Sox14 or Sox21

Fig. 1. Alignments of entire coding region of Sox14 and Sox21. Sox14 (A) and Sox21 (B) amino acid sequences were aligned using ClustalW and
shaded using JalView (Clamp et al., 2004). Identical residues are shaded in dark grey and similar amino acids are shaded light grey. The high mobility
group (HMG) domain is labeled and indicated with the blue bar, the group B homology domain is indicated with a pink bar and the polyalanine stretches
characteristic of Sox21 are indicated by the asterisks and the yellow bar. Abbreviations used: Gg (Gallus gallus), Hs (Homo sapiens), Mm (Mus
musculus), Xt (Xenopus tropicalis), and Xl (Xenopus laevis).
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proteins, showing closest conservation with X. tropicalis. In addi-
tion, the indicated bootstrap values provide strong support for the
clustering. We also constructed a tree using the distance neighbor-
joining method (data not shown) and obtained the same results.

Sox14 spatio-temporal expression
To determine the temporal and spatial expression of X. laevis

sox14, we performed RT-PCR and whole mount in situ hybridiza-
tion (WISH) at a variety of embryonic stages. By RT-PCR analysis,
sox14 expression is first detectable at stage 25, peaks at stage 28
and this level of expression persists throughout all later stages
examined (to st. 38, Fig. 3A). Using WISH we examined the spatial

expression pattern of sox14 from stages 17 through stage 48.
Sox14 is expressed by stage 28 (data not shown), with expression
in the midbrain and hypothalamus clearly detectable by stage 32,
as well as a faint ventral expression domain caudal to the midbrain
(Fig. 3B). While expression remains strongest in the presumptive
midbrain, by stage 38 additional discrete expression domains
became apparent (Fig. 3C, arrowheads). In sagittal sections and
dissected brains from stage 38 stage embryos, it is evident that
sox14 is expressed in the hypothalamus, the midbrain and the
hindbrain (Fig. 3D and E). Within the midbrain, there are two
expression domains: one dorsal domain, the optic tectum (OT),
and one ventral domain, likely to be within the oculomotor

Fig. 2 (left). Phylogenetic analysis of SoxB2 protein

family members. SoxB2 sequences were obtained
from Genbank or from the Joint Genome Institute (JGI).
Protein identification numbers derived from previously
identified genes are as follows: TrSox14a (AAQ18498.1),
TrSox14b (AAQ18499.1), HsSox21 (AAC95381),
GgSox21 (BAA77266.1), MmSox21 (AAN6055.1), DrSox21a (NP_571361), DrSox21B (NP_001009888.1), HsSox14 (NP_004180.1),
GgSox14(NP_990092.1), MmSox14 (AAI00556), TrSox14a(AAQ18498.1), DrSox14 (AAI08034) and TrSox14b (AAQ18499.1). Sequences obtained
from JGI are as follows: XtSox21 (gw1.467.21) and XtSox14 (e_gw1.344.69.1). Gg (Gallus gallus), Hs (Homo sapiens), Mm (Mus musculus), Dr (Danio
rerio), Tr (Takifugu rubripes).

Fig. 3 (right). Spatio-temporal expression pattern of sox14. (A) RT-PCR analysis from oocytes and embryos to stage 38 as indicated across the
top. ODC (lower panel) was used as the loading control. (B-I) In situ hybridization of sox14 at indicated stages. In all figures, anterior is to the left. (B)

Lateral view; (C) dorsal view, anterior view in the inset. (D) Sagittal sections of stage 38, double in situ of sox14 and en2 in the inset. (E) Dissected
brain from stage 38 embryo. (F-I) Transverse sections from stage 32 (I) and 38 (F-H) embryos. Symbols: bracket, expression in vestibular nuclei; black
arrowhead, dorsal thalamus; open arrowhead, dorsal hindbrain sox14 positive cells; M, midbrain; hy, hypothalamus; and AM, abducens motornucleus;
mhb, midbrain hindbrain barrier; OT, optic tectum; DT, dorsal thalamus; OM, oculomotor motornucleus; TM, trochlear motornucleus; IN, interneurons.
Black bar equivalent to 100 µm.
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motornucleus (OM) (Fig. 3D, E and G). Caudal to the oculomotor
motornucleus are sox14 expressing-cells likely to be the trochlear
motornucleus (TM) and even further caudal are the faintly labeled
cells in the region of the abducens motornucleus (AM) (Fig. 3D)
(Hartenstein, 1993, Guo et al., 1999,Talikka et al., 2004). To
confirm the colocalization of the somatic motornuclei with sox14
expression, we performed double in situ hybridization with sox14
and en2 (inset, Fig. 3D) or pax2 (data not shown), markers of the
midbrain-hindbrain boundary. The sox14 expression overlaps with
the ocular motonucleus which is directly rostral to the MHB and the
trochlear motornucleus just caudal to the MHB. In the dorsal
hindbrain are single sox14 positive cells dispersed though the

vestibular nuclear complex (Fig 3D and E, bracket). Anterior to the
midbrain expression is a small expression domain, likely to be the
dorsal thalamus (DT) (Fig. 3C-F) (Bachy et al., 2001). In transverse
sections of the spinal cord, sox14 expression was also detected in
a ventral domain of the spinal cord as early as stage 32 (Fig. 3I and
data not shown). We presume this expression domain in the spinal
cord marked by sox14 corresponds to the subset of interneurons
marked by mouse and chick SOX14 (Uchikawa et al., 1999,
Hargrave et al., 2000).

Sox21 spatio-temporal expression
We examined the temporal expression pattern of sox21 during

Fig. 4. Spatio-temporal expression pattern of sox21. (A) RT-PCR analysis of embryos from oocyte to
stage 36 as indicated across the top. ODC was used as the loading control. (B,C,F,J,N,P) In situ
hybridization of embryos stained for sox21 at indicated stages and (F-M, O) for regional brain markers as
indicated. (B,C, J-M, inset P) Anterior views. (N-P) Dorsal views. (F-I) Lateral views. (D,E) Transverse
sections generated from a stage 31 embryo. Symbols: Black asterisks, midbrain-hindbrain boundary; f,
forebrain; h, hindbrain; m, midbrain; hy, hypothalamus; n, notochord; op, olfactory placode; ov, otic vesicle.

Xenopus embryo development us-
ing RT-PCR. Expression was ab-
sent from the oocyte and stages
prior to the midblastula transition (st.
8), first detected at stage 10 and
maintained in all subsequent stages
examined (to st. 36, Fig. 4A). Using
whole-mount in situ hybridization,
sox21 expression was first detected
at stage 15 throughout the anterior
neural plate (Fig. 4B). By stage 17,
sox21 expression was still through-
out the presumptive CNS; however,
a noticeable gap in expression was
observed (Fig. 4C). The region im-
mediately posterior to this gap had a
considerably higher level of expres-
sion than neighboring regions (Fig.
4C, black asterisk). This restricted
pattern of expression persisted
through late tailbud with expression
strongly detected in the presumptive
forebrain, olfactory placode, and otic
vesicle by stage 33 (Fig. 4 E,P). To
identify the expression domains of
sox21, we compared its expression
to that of other well characterized
brain markers, en2, which marks the
midbrain-hindbrain boundary
(Hemmati-Brivanlou et al., 1991),
eomes, which marks the telencepha-
lon and a portion of the diencepha-
lon (Bachy et al., 2002) and
foxG1(formerly known as bf-1), which
also marks the telencephalon (Regad
et al., 2007) (Fig. 4 F-O). As labeled
in Fig. 4P, we determine that sox21
is expressed throughout the central
nervous system, with strong expres-
sion in the forebrain, midbrain, and
MHB and reduced expression in a
region of the diencephalon.

To determine the dorsoventral
expression pattern in the developing
brain and spinal cord, we analyzed
transverse sections of stained em-
bryos (Fig. 4D and E). At stage 31,
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sox21 expression was detected in the forebrain and hypothala-
mus (Fig. 4D), in the dorsal region of the hindbrain and devel-
oping neural tube, and weakly in the otic vesicles (Fig. 4E and
data not shown).

In summary, we have shown that X. laevis has at least two
soxB2 genes, sox14 and sox21. They have patterns of expres-
sion distinct from each other throughout stages of early devel-
opment. Here we show sox14 marks a subset of interneurons
located in the ventral portion of the spinal cord as well as in a
portion of the dorsal thalamus. Except for the hypothalamus, all
other sox14 labeled cells and nuclei are directly or indirectly
involved in eye movement through optokinetic and vestibular
reflexes (Nieuwenhuys et al., 1998). Cell cycle exit data sug-
gest that most of the labeled cells are postmitoic neurons that
have exited the cell cycle between st. 23-30 (Hartenstein,
1993). Interestingly, the onset of expression of sox14 corre-
lates with the onset of neuronal differentiation of the ventral
midbrain and ventral interneurons of the spinal in Xenopus
laevis (Hartenstein, 1993). Combined these data may suggest
that Sox14 is a master regulator for eye movement centers as
much as Atoh1 is governing development of proprioreceptive
centers (Bermingham et al., 2001). Indubitably, experimental
evidence is needed to verify this suggestion. X. laevis sox21
expression marks the olfactory placodes, forebrain, midbrain-
hindbrain barrier, and neural tube, with a gap of expression
corresponding to the dorsal thalamus. It will be interesting to
investigate the roles these genes have in neurogenesis and
patterning in X. laevis.

Experimental Procedures

Cloning and sequence analysis
Sox14: Using a probe designed to be complementary to the HMG

domain of Sox genes, a X. laevis genomic library was screened. One
clone contained 1218 bp upstream of the predicted start ATG and 160
bp downstream. We used the sequence downstream of the predicted
ATG to BLAST all known EST databases and found that it that was
highly homologous to sox14 genes. Using inverse PCR we obtained a
720 bp product and corresponded with the ORF for Sox14. This product
was cloned into the pGEM T-easy vector (Promega) to generate
pGEM-Xlsox14.Primers used for the inverse PCR were:

F1: 5’TATGACAGTTGGAGAGGGC 3’,
R1: 5’ GGGAGCATGTGGGTAGTCT 3’,
F2: 5’ TATGACAGTTGGAGAGGGC 3’,
R2: 5’ CATAGACCTGGAGAGTAATTG 3’.

sox21: The following primers were designed based on the sequence of
sox21 found in the X. tropicalis genome v4.1 (http://genome.jgi-psf.org/
Xentr4/Xentr4.home.html): F 5’ ATGGCTAAACCGGTGGATC 3’ R: 5’
GCCAGTGCCCTTAGTCGG 3’. The amplified 789 bp product was
cloned into pGEM T-easy vector (Promega) to generate pGEM-Xlsox21.

We used the sequence information from pGEM-Sox21 to generate
inverse PCR primers to obtain the XlSox21 sequence:

F1: 5’ CTGGGTGACACAGCAAGGCG 3’;
R1: 5’ GGCAGAGATGACACATTC 3’;
F2: 5’ CATGTAAACTAACAGCCTTC 3’;
R2: 5’ CATCTATTCCTTATACCTCG 3’.

Protein alignment and tree construction
Amino acid sequences were aligned using ClustalX, available from

ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/. The alignment was color
coded according to Blosum62 scores using JalView (Clamp et al.,
2004). The parsimony tree and neighbor-joining distance tree were

constructed using PAUP4.0*.

Semi-quantitative RT-PCR analysis
RNA was extracted for RT-PCR analysis as described (Wilson and

Melton, 1994). One embryo equivalent was used for each RT-PCR
experiment. To assay for DNA contamination in RT-PCR experiments, an
embryo was processed without reverse transcriptase and labeled as the
RT minus lane in each experiment. Ornithine decarboxylase (ODC) was
used as the loading control. RT-PCR primers for the ODC have been
described elsewhere (Hudson et al., 1997). The primers used for detec-
tion of Xenopus soxB2 genes are:
sox21: U, 5'-TAGTTTGACAGGGGACCATGATGGG-3';

D, 5'-CCCCACCTGTAACCCCAGCAAA-3'; 64 °C, 25 cycles.
sox14: U, 5’ CTTTCCACCAACATCAACAC 3’;

D, 5’ CCAGCTTTAGTCATACCAGG 3’; 55°C, 30 cycles.

Whole-mount in situ hybridization
Whole-mount in situ hybridizations were performed as described

previously (Harland, 1991). Antisense RNA DIG labeled (Roche) probes
were synthesized using either pGEM-XLsox14 or pGEM-XLsox21 and
detected using BM purple (Roche). Double in situ hybridization were
performed as described previously (Hollemann et al., 1998), DIG labeled
sox14 and fluorescein labeled (Roche) en2 and pax2 probes were
employed.
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