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MmRNA, is localized in the mitochondrial cloud
in Xenopus laevis oocytes
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ABSTRACT In Xenopus species, the early stages of oogenesis take place in the developing
tadpole ovary when the oocytes are in a period critical for the organization of the germ plasm
(believed to be a determinant of germ-cell fate) and the initial stages of localization of RNAs
involved in germ plasm functions. We constructed a cDNA library from the ovaries of stage 64
Xenopus tadpoles with the idea that it will be enriched for oogonia and pre-stage | and stage |
oocytes and thus, RNAs involved in oocyte development and germ plasm formation and function.
From this cDNA library, we cloned a new maternal localized mRNA which we named centroid. This
RNA codes for the protein belonging to the DEAD-box RNA helicase family. Some of the members
of this protein family are components of the messenger ribonucleoprotein (mRNP) particles stored
inthe germ plasm in oocytes of Xenopus, Drosophilaand Caenorhabditis species and are believed
to play a role in translational activation of stored mRNPs and sorting of mRNPs into the germ
plasm. We found that centroid mRNA is localized in Xenopus oocytes by a combination of early
and late pathways, a pattern of localization that is very similar to the intermediate pathway
localization of fatvg mRNA, another germ-plasm-localized RNA in Xenopus oocytes. Also,
centroid mRNA is present in the mitochondrial cloud and in the germ plasm at the surface of
germinal granules. This suggests that centroid is involved in the regulation of germ plasm-stored

mRNPs and/or germ plasm function.
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Introduction

Localized RNAs are known to play important roles in the
establishment of asymmetry in a wide variety of systems from
yeast to mammals (Bashirullah et al., 1998; Jansen, 2001; King
et al., 1999; Kloc et al., 2001a, 2002b; Palacios and Johnston,
2001). In the frog Xenopus laevis, subsets of RNAs are localized
to the animal and vegetal poles of oocytes (Forristall et al., 1995;
King etal., 1999; Kloc et al., 2001a, 2002b; Kloc and Etkin, 1995).
RNAs are localized to the vegetal pole of Xenopus oocyte by three
different pathways. First, the early or METRO pathway uses the
mitochondrial cloud (Balbiani body) to deliver RNAs such as
Xlsirts, Xcat2 (related to the Nos/Vasa DEAD-box family; Asp-
Glu-Ala-Asp, D-E-A-D; hence the family name), Xpat, Xwnt 11,
Xdazl, the DEAD-box RNA helicase DEADSouth and germinal
granules (collectively called the germ plasm and believed to be a
germ-cell determinant) to the vegetal pole in early oogenesis.
Second, the late pathway operates in late oogenesis and uses

microtubules and molecular motors to deliver RNAs such as Vg1l
and VegT to the vegetal pole of the oocyte (Forristall et al., 1995;
Kloc and Etkin, 1995). Third, the intermediate pathway uses a
combination of early and late pathways to deliver RNAs such as
fatvg to the vegetal pole of the oocyte (Chan et al., 1999, 2001).

Studies have shown that vegetally localized mRNAs Vg1,
VegT and Xwnt 11 are determinants of mesoderm and endoderm
fate as well as the left-right axis in the embryo (Joseph and Melton,
1998; Rebagliati et al., 1985; Stennard et al., 1996; Xanthos et al.,
2001; Zhang et al., 1998; Zhang and King, 1996). Most recently,
we showed that the localized RNAs Xlsirts and VegT in Xenopus
play a structural role in maintaining the integrity of the cytoskel-
eton of the vegetal cortex (Kloc et al., 2005; Kloc et al., 2007).
Other vegetally localized mRNAs in Xenopus species, such as
Xcat2, Xdazl and fatvg, are believed to play roles in germ-cell

Abbreviations used in this paper: mRNP, messenger ribonucleoprotein; ORF,
open reading frame; UTR, untranslated region.
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determination or migration (Houston and King, 2000a, 2000b;
Chan et al., 2001, 2007), whereas Xpat may be involved in the
organization of the germ plasm, perhaps playing a role similar to
that of oskar in Drosophila species (Hudson and Woodland,
1998). Thus, a substantial number of localized transcripts clearly
play critical roles in a wide variety of cellular and developmental
processes and the discovery of novel localized transcripts will
undoubtedly lead to a greater understanding of how oogenesis,
development and many other cellular processes are regulated.

Results
We constructed a cDNA library from the ovaries of stage 64

Xenopustadpoles with the idea that it will be enriched for oogonia
and pre-stage | and stage | oocytes. In Xenopus, the early stages

A

taagctaccc attccattag cacccacatc tacccaatcc ttcacacctg cacccatttc tccctcacca
tctgtagcca cctccactcc atccatatct tgtgctgcca aggctgcttc tccctccaaa tctgtcaaac
tcccaccgtt agtcactcct acagaggatg ctgaggaaga agcagtcaag tcatacagta aaagtcaacg
ctggccgttt cctggggatc cattgtgtgt tatctgtgga agatacggag agtatatatg tgatcagacg
gaccatgacg tgtgcagctt agagtgcaaa gccatggaca ttttgcaggc ttctggggca gccagcaccc
cacttgtttt cccagacaag gccactaact catcaccttt attgtattca actgctggcc ctttgagtaa
ttcagttgtc accagtgata tatcctcatg ccaaaatatt gaagaagata gttcacaact gacaacacac
aatcatgcaa tgccttacac ctacagggaa catgagttca tctcccagtt aagccctgag cagattgacc
acctgagaca gcagntagct tgtagtacaa gggaatgagg tgtgcaagcc aatcatggag tttgaccact
gtcagtttcc tcctgtactc agctctaaca taaaggcggc aggctatgaa gtgcctactc ctattcagat
gcagatgatc ccagttgggc ttatggaaag agatattttg gcaagtgcag atacaggttc tggcaaaact
gcagcatttc tgcttccagc tataattcga tgccttgaga agaaggattc tccagctgca ctgattctca
cacccacaag agaactggct gtgcagatag agggacaggc caaagaattg atgcgtggga ttcctcacat
cagatacacc gtcttaaaca aggtgtacag
gttataatag ccacgccggg gagacttcta gaaattatta accaggattg tgtgaatctt ggtgatttaa
agattctgat tgtggatgag gctgatacca tgttgaagat ggggtttcag caacaagtcc tagatatttt
ggagcatgca tcacatgacc atcagaccat tctggtgtca gctaccatcc ccgctgggat tgaggccttce
acaaagcagc ttctgcagga tccagtacga atcgctgttg gcgagaaaaa tcagccttgc agcaatgtga
caaagaagaa aaagctcttt gaaatattga atgattccaa
gcttttccag ccccctgtat tggtgttggg attgccgect tggtgctgat ctgctgagcg atgctatctg
taagattaca ggtttagaat gtgtggcaat gcactctgat aaatctcaga tggaacgaat gaagatcctg
cagggtttgc tccagggaga atatgatgtt gtggtgagca ctggagtgct ggggcgaggg ctggatctgg
tgaatgtcaa gttggttgtg aacttcgaca tgccaccaag tatggatgag tatgtgcacc agattggcag
agcaggaaga cttggccaca gaggaacagc gataacatta attaacagga acaaccgcag cctcttctgg
gacctggtga aaagagtgca gcccaccggc tcactgctgc ccccacaact gctaaattcc ccctatctac
aagaacagaa gaaagttgat gagagagggc ggcgggacaa agagaaagtg gtaacaggag accaaattct
tgatctcatc cgaaaacatg acaggaggaa atctcaaaaa tgactgtcgg catggtctct atttttctct
ctttctacgg ataatgaccg tttacaagga ctctgactgc tttaaaatgt ctctgttata gaaatatata

gagaactgct ctgcttgtgg gtgggatgcc tctgccacct

gacagattgt actgtgggtg gaagaacctt

ttattaaata tatatgcttc aaaaaaaaaa
SIUTR 614bp; ORF 765bp; 3!UTR 611bp Total 1,990bp
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of oogenesis take place in the developing tadpole ovary. Each
oogonium undergoes four mitotic divisions with incomplete cy-
tokinesis, giving rise to a cluster (nest) of 16 pre-stage | oocytes
(connected by cytoplasmic bridges) that enter the prophase of
meiosis (Kloc et al., 2004). Subsequently, in the ovaries of
froglets, the oocytes become separated and surrounded by
ingrowing follicular cells and cytoplasmic bridges connecting the
oocytes disintegrate; in the ovaries of adult frogs, the oocytes
enter the phase of growth and accumulation of yolk (stage I-VI
oocytes).

The prominent structure in pre-stage | and stage I-1l oocytes is
the mitochondrial cloud, which is located in the vicinity of the
oocyte nucleus (Kloc et al., 2004). The main body of the mitochon-
drial cloud is composed of mitochondria and its vegetal apex
contains germ plasm. In the tadpole ovary, the oocytes are in a
period critical for the organization of the
germ plasm and the initial stages of local-
ization of germ plasm RNAs such as Xcat2
(Kloc et al., 1998, 2002a, 2004). In pre-
stage | and early stage | oocytes, the germ
plasm contains the mitochondrial cement,
which is located between mitochondria and
originates from the perinuclear nuage. The
mitochondrial cement is the immediate pre-
cursor of granulofibrillar material (GFM),
which ultimately forms the “mature” germi-
nal granules present in stage | and older
oocytes (Bilinski et al., 2004; Kloc et al.,
2004). Therefore, we constructed the cDNA
library described above with the intent of
identifying RNAs critical for these processes.
Afterisolation of individual clones, we deter-
mined the patterns of localization of their
cognate RNAs in different-stage oocytes
(pre-stage | to stage VI) using in situ hybrid-
ization.

Weisolated atotal of 91 individual clones.
Of these clones, 27 were positive by in situ
hybridization in nest-stage (pre-stage 1)
oocytes: 8 clones gave a positive signal in
the mitochondrial cloud and 19 clones gave
a positive signal in the cytoplasm. In stage
I-VI oocytes, we found 27 positive clones:
11 clones, including the clone named cen-
troid described below, gave a positive sig-
nal in both the mitochondrial cloud and
vegetal cortex and 16 clones gave a positive
signal in the cytoplasm. From the screen we
identified 10 new localized transcripts. We
sequenced all of the clones showing defi-
nite localization patterns and analyzed them
for homology using database searches (un-

Fig. 1. Centroid nucleotide sequence and deduced amino acid sequence. (A) Nucleotide
sequence of the centroid cDNA clone. The whole clone was 1,990 bp long with a 614-bp-long 5’
untranslated region (UTR), 765-bp-long open reading frame (ORF, marked in red) and 611-bp-long
3" UTR. (B) Deduced amino acid sequence of centroid protein showing motifs (boxed) common
to DEAD-box RNA helicases. (C) Comparison of the amino acid composition of DEAD-box RNA
helicase consensus motifs and centroid. Motifs Q, | (Walker A), Il (Walker B) and VI are involved
in ATP binding and hydrolysis; motifs la, Ib, IV and V are involved in RNA binding; and motif Ill is
involved in RNA-induced conformational changes (Cordinetal., 2006, Heung and Del Poeta, 2005).

published data).

Centroid is a member of the DEAD-box
RNA helicase protein family

One of the cDNA clones that we isolated
from the tadpole ovary cDNA library was
1,990 bp long (GenBank accession number
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Fig. 2. Alignment of the centroid amino acid sequence and related DEAD-box RNA helicase proteins. A BlastPsearch was performed using
centroid protein sequence against the NCBI non redundant peptide database. Nine representative protein sequences from a variety of organisms
(including mammals and plants) were selected from among the top search hits to assess sequence conservation by multiple alignments. TwoXenopus
DEAD-box proteins (Xp54 and p68) were also included in the alignment for comparison. The multiple sequence alignments of the amino acid sequences
were generated using ClustalWV (http.//searchlauncher.bcm.tmc.edu/multi-align/multi-align.html) followed by BOXSHADE (http.//www.ch.embnet.org/
software/BOX_form.html). The black and gray shaded boxes indicate identical and similar amino acid residues, respectively, in a given column.

843804; Fig. 1A) and contained a 765-bp-long open reading
frame (ORF). Translation of the ORF showed a conceptual
protein of 254 amino acids containing a DEAD-box motif (Figs. 1B
and 1C). We performed a database search using the Basic Local
Assignment Search Tool (National Center for Biotechnology
Information) that showed extensive homology between this clone
and other vertebrate and invertebrate DEAD-box RNA helicases
(Fig. 2). Specifically, we found 75% identity of this clone with
Gallus gallus (GenBank accession number XM-422189; unpub-
lished data), 73% identity with Canis familiaris (GenBank acces-
sion number NW-876323; unpublished data), 72% identity with
Bos taurus (GenBank accession number XM-592818.2; unpub-
lished data) and Mus musculus (Carninci and Hayashizaki, 1999),
68% identity with Danio rerio (Strausberg et al., 2002), 37%
identity with chordate p68 (Seufert et al., 2000) and 36% identity
with Xenopus p54 (Ladomery et al., 1997) DEAD box RNA
helicases (Fig. 2). Analysis of the centroid protein sequence
showed the presence of six of nine conserved motifs—Q, |, la, Ib,
Il and Ill—characteristic of DEAD-box RNA helicases (Fig. 1C).

Motifs Q, | and Il are known to function in ATP binding and
hydrolysis, motifs la and Ib are known to function in RNA binding
and motif Il is known to function in ATP-induced conformational
changes (Cordin et al., 2006, Heung and Del Poeta, 2005).

Centroid mRNA is localized by the intermediate pathway and
is a component of germ plasm

To determine the localization pattern of centroid RNA, we
performed whole mount in situ hybridization and in situ hybridiza-
tion on sections of different-stage oocytes for light and electron
microscopy. Light microscopy showed that in pre-stage 1 oo-
cytes, centroid RNA was dispersed throughout the cytoplasm but
was not present in the main mitochondrial cloud and secondary
clouds (Fig. 3). In stage | oocytes, centroid RNAwas presentin the
center of the mitochondrial cloud; starting at late stage I, it co-
localized with the germ plasm first at the vegetal tip of the
mitochondrial cloud and then in the mitochondrial cloud frag-
ments at the oocyte vegetal cortex (Fig. 3). This indicated that
centroid mRNA is localized by a combination of early and late
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pathways, a pattern of localization that is very similar to the
intermediate pathway localization of fatvg mMRNA, another germ-
plasm-localized RNA in Xenopus oocytes (Chan et al., 1999,
2001, 2007).

Electron microscopy analysis of centroid mRNA localization
showed that centroid mRNA is absent from the mitochondrial
cement in pre-stage | oocytes (Fig. 4). We calculated the number
of silver grains present in mitochondrial cement and surrounding
cytoplasm in 20 samples. We found no (zero) grains in the
mitochondrial cement and on average 9.75 (s. d. 3.45) grains in
the matrix region of mitochondrial cloud. In early stage | oocytes
centroid mMRNA was visible in the vicinity of but not on the germinal
granules (on average 2.7 grains with s. d. = 2.1 in the vicinity of
germinal granules) and subsequently starting at late stage I/ early
stage Il oocytes it was present at the periphery of the germinal
granules (on average 3.2 grains with s. d. =1.58 on the periphery
of each granule; Fig. 4).

Discussion

We cloned a new maternal localized mRNA that belongs to the
DEAD-box RNA helicase family of proteins. These proteins are

Fig. 3. Centroid mRNA localization in Xenopus oocytes. (A-C) Whole
mount in situ hybridization showing localization of centroid mRNA (ar-
rows) in the mitochondrial cloud in a stage 1 oocyte (A) and in the apex
of the vegetal cortex in a stage Il oocyte (B) and a stage Il oocyte (C). (D-
J) Sections of whole mount in situ hybridization showing localization of
centroid mRNA in oocytes at different stages. (D) In a pre-stage | oocyte,
centroid mRNA is uniformly dispersed in the cytoplasm but excluded
from the mitochondrial cloud (long arrow) and secondary clouds (short
arrows). (E,F) In a stage | oocyte, centroid mRNA (arrow) is located in the
center of the mitochondrial cloud. Panel (F) shows the high magnification
of the mitochondrial cloud (white sphere) with centrally located centroid
mRNA (arrow). (G,H) In late stage I/early stage Il and stage Il oocytes,
centroid mRNA is limited to the vegetal tip of the mitochondrial cloud (co-
localizing with the germ plasm [long arrow]) and is excluded from the
apical part of the mitochondrial cloud (short arrows). (I-K) Stage Ill, early
stage IV and stage |V oocytes showing localization of centroid mRNA in
the islands of a dispersing mitochondrial cloud (arrows). n, nucleus. Scale
bars are equal to 56 um in (A), 90 um in (B,G), 100 um in (C), 70 um in (D),
75umin (E), 65 umin (F), 86 um in (H), 80 umin (I) and 100 um in (J,K).

ATP-dependent enzymes involved in many aspects of RNA

metabolism such as transcription, RNA splicing, ribosome bio-
genesis, translation initiation and RNA transport and degradation
and are found in all eukaryotes and most prokaryotes (Cordin et
al., 2006; Heung and Del Poeta, 2005). Members of this family
share conserved motifs that play a role in ATP binding and
hydrolysis, RNA binding and RNA-induced conformational
changes. Comparison of the amino acid composition of DEAD-
box RNA helicase consensus motifs and centroid showed that
centroid contains motifs Q, | (Walker A), Il (Walker B), which are
involved in ATP binding and hydrolysis, motifs Ia, Ib involved in
RNA binding and motif Ill which is involved in RNA-induced
conformational changes (Cordin et al., 2006; Heung and Del
Poeta, 2005). The presence in the centroid of the motifs Q and I-
Il suggests that this protein is involved in the sSRNA binding, ATP
hydrolysis and it may possess helicase activity. Interestingly,
centroid lacks the motif IV, V and VI, which are present in DEAD-
box RNA helicase consensus sequence. So far the function of
motif IV is poorly understood but it was suggested that it may be
involved in ssRNA binding and that has a functional connection to
motif V involved in ATP hydrolysis (Cordin et al., 2006). Motif VI
has been shown to participate in RNA binding and ATPase activity
(Cordin et al., 2006). The DEAD-box RNA helicases are the
multifunctional molecules and their activities depend on the
communication and interaction between multifunctional motifs.
Only future functional studies will be able to show how the lack of
motif 1V-VI influences the centroid function in comparison with
other known DEAD-box helicases. Some of the members of this
protein family, such as the DEAD-box RNA helicase p54 (Ladomery
etal., 1997; Weston and Sommerville, 2006), are components of
the messenger ribonucleoprotein (MRNP) particles stored in the
germ plasmin oocytes of Xenopus, Drosophilaand Caenorhabditis
species and are believed to play a role in translational activation
of stored mRNPs and sorting of mMRNPs into the germ plasm
(Bilinski etal., 2004; Cordin etal., 2006; Weston and Sommerville,
2006).

Previously, we described the presence of two DEAD-box RNA
helicases DEADSouth (Bilinski et al., 2004; Komiya et al., 1994;
MacArthur et al., 2000) and vasa-like XVLG1 in the germ plasm
in Xenopus oocytes (Bilinski et al., 2004). DEADSouth mRNA is



Fig. 4. Electron microscopy analysis of centroid mRNA localization
in the germ plasm of Xenopus oocytes. (A) Fragment of the mitochon-
drial cloud in a pre-stage | oocyte hybridized with a centroid anti-sense
RNA probe, labeled with nanogold and silver-enhanced showing the
mitochondrial cement (long arrows) located between the mitochondria.
Centroid mRNA (short arrows) is present in the mitochondrial cloud but
excluded from the mitochondrial cement. (B,C) Fragment of the mito-
chondrial cloud from stage 2 oocytes showing centroid mRNA (short
arrows) located in the vicinity (B) and at the periphery (C) of the germinal
granules (long arrows). m, mitochondria.

present at the surface of GFM and germinal granules but absent
from nuage and mitochondrial cement. In contrast, XVLG1 mRNA
is absent from germinal granules and GFM, but XVLG1 protein is
present in nuage and mitochondrial cement (Bilinski et al., 2004).
The fact that centroid mRNA is also present at the surface of
germinal granules in Xenopus oocytes suggests its involvement
in the regulation of germ plasm-stored mRNPs and/or germ plasm
function. In addition, the fact that different DEAD-box RNA
helicases are present in germinal granules at different stages of
formation (nuage, GFM, mature germinal granules) suggests that
their function is temporarily regulated during the formation and
“maturation” of the germ plasm. However, determination of the
role of centroid and the precise role of other germ-plasm-localized
DEAD-box RNA helicases in germ plasm function will require
further functional study.

Materials and Methods

Construction of the stage 64 tadpole cDNA library (nest library)
Several dozen ovaries (300 mg of ovarian tissue) were collected from
4 cm-long froglets into RNAlater solution (Ambion). Total RNA was
prepared using an RNAqueous kit (Ambion) and poly(A+) RNA was
isolated using an Oligotex RNA mini kit (Qiagen) according to the
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manufacturer’s protocol. A directional cDNA library was prepared using
poly (A+) RNA and the SuperScript plasmid system with pPSPORT1
plasmid (Gibco BRL). In short, 4 ug of poly (A) RNA, TTTTTT Notl primer
adapter and Superscriptll reverse transcriptase were used to introduce
directionality and to make first-strand cDNA. Subsequently, the Escheri-
chia coliligase, DNA polymerase | and T4 polymerase were used to make
second-strand and double-strand cDNA. The resulting double-strand
cDNA was Sall-adapted with T4 DNA ligase. After subsequent digestion
with Notl, the cDNA with Notl/Sall termini was size-fractionated using
column chromatography. Fractions 1-12 were pooled and precipitated
and the cDNA was ligated to a Notl/Sall-cut pSPORT1 vector. Vector-
ligated cDNA was introduced by transformation into E. coli (XI blue) cells.
Transformed bacteria were plated on ampicillin plates and colonies from
10 plates were scraped into LB medium and frozen in glycerol at -80°C.
This served as a library stock for further screening using in situ hybridiza-
tion.

Screening of the nest library

The nest library was plated on LB ampicillin plates. Plasmid DNA from
single colonies was purified using a plasmid purification kit (Qiagen). DNA
from each colony was linearized with Sall and antisense digoxigenin-
labeled RNA probes were synthesized in vitro using Sp6 RNA poly-
merase. Froglet ovaries containing nest-stage and early pre-stage |
oocytes and stage I-VI oocytes from large frog ovaries were defolliculated
with collagenase, fixed in MEMFA and hybridized whole mount with RNA
probes according to a protocol described previously (Kloc and Etkin,
1995). Anti-digoxigenin antibody conjugated with alkaline phosphatase
and a BCIP/NBT substrate was used to detect (by color reaction) the
hybridization signal.

Oocytes that showed positive signal were photographed as whole
mounts and subsequently embedded in paraplast and sectioned at 10
wm. The sections were deparaffinated in HistoClear (National Diagnos-
tics), mounted in Permount (Sigma) and photographed under a Nikon
microscope.

Whole mount in situ hybridization for electron microscopy

Whole mount in situ hybridization for electron microscopy was per-
formed exactly as described previously (Kloc et al., 2001b). In short,
oocytes were fixed in 4% formaldehyde, 0.1% glutaraldehyde, 100 mM
KCI, 3 mM MgCl,, 10 mM HEPES, 150 mM sucrose and 0.1% Triton X-
100, pH 7.6. After fixation and washing, oocytes were treated for 7 min
with 10 ug/ml proteinase K in PBS-0.1% Tween 20 and hybridized
overnight at 50°C with a digoxigenin-labeled antisense RNA probe (see
above). After washing, oocytes were incubated overnight at 4°C with a
1:30 dilution of anti-DIG 0.8 nm gold (Roche) in G2 buffer (Roche). After
intensive washing in PBS-Tween 20, oocytes were silver-enhanced and
processed for embedding and sectioning for electron microscopy as
described previously (Kloc et al., 2001b). The sections were examined in
a JEOL 1200EX transmission electron microscope.
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