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ABSTRACT  Fox (forkhead) genes encode transcription factors that play important roles in the

regulation of embryonic patterning as well as in tissue specific gene expression. Mutations in the

human FOXP2 gene cause abnormal speech development. Here we report the structure and

expression pattern of zebrafish FoxP2. In zebrafish, this gene is first expressed at the 20-somite

stage in the presumptive telencephalon. At this stage there is a significant overlap of FoxP2

expression with the expression of the emx homeobox genes. However, in contrast to emx1, FoxP2

is not expressed in the pineal gland or in the pronephric duct. After 72 hours of development, the

expression of zebrafish FoxP2 becomes more complex in the brain. The developing optic tectum

becomes the major area of FoxP2 expression. In the adult brain, the highest concentrations of the

FoxP2 transcript can be observed in the optic tectum. In the cerebellum, only the caudal lobes

show high levels of Foxp2 expression. These regions correspond to the vestibulocerebellum of

mammals. Several other regions of the brain also show high levels of Foxp2 expression.
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Forkhead proteins are important transcriptional regulators that
are involved in pattern formation during vertebrate develop-
ment as well as in tissue specific gene expression and
tumorogenesis (Accili and Arden, 2004, Carlsson and Mahlapuu,
2002, Dirksen and Jamrich, 1992, Dirksen and Jamrich, 1995,
El-Hodiri et al., 2001, Erickson, 2001, Kaufmann and Knochel,
1996, Lai et al., 2001, Lai et al., 1990, Lehmann et al., 2003, Li
and Vogt, 1993, Tseng et al., 2004).

FOXP2, a member of the Foxp subfamily of Fox genes, is the
only gene shown to be involved in speech and language
development in humans (Bruce and Margolis, 2002, Enard et
al., 2002, Fisher et al., 1998, Katoh, 2004, Lai et al., 2001, Lu
et al., 2002, Saleem et al., 2003, Shu et al., 2001, Wang et al.,
2003, Zhang et al., 2002). Mutations in this gene result in
impaired linguistic and grammatical skills that, together with
diminished control of complex face and mouth movements,
lead to disrupted speech (Hurst et al., 1990, Vargha-Khadem et
al., 1998). A recent study showed expression of FoxP2 in the
entire adult brain of birds and crocodiles (Haesler et al., 2004).
In this paper, we provide information about the isolation, se-
quence and expression pattern of zebrafish FoxP2 during
development and in adult brain.

Foxp2 is somewhat of an unusual protein in that it contains
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a forkhead and zinc finger domain. PCR and degenerate prim-
ers were used to isolate a cDNA fragment of the zebrafish
FoxP2 gene that encodes both of these domains of the protein.
After sequencing the isolated PCR fragment, we found that our
sequence has a high homology to several zebrafish EST frag-
ments in the GenBank database. Figure 1 shows the compari-
son of the deduced amino acid sequence of the zebrafish to the
mouse and human FOXP2 protein. This comparison shows that
the FoxP2 protein is highly conserved during evolution. Not
surprisingly, the similarities between the zebrafish, mouse and
human FOXP2 protein are highest in the forkhead and the zinc
finger domain. However, the overall conservation of amino
acids in the entire protein between zebrafish and human is
unusually high, greater than 80%. The most notable difference
between these three proteins is in the poly-glutamine region.
While the human and mouse FOXP2 contain as many as 50
glutamines in two adjacent poly-glutamine regions, the zebrafish
FoxP2 contains only nine. The functional significance of this
difference is not known, but the expansion of poly-glutamine
stretches of proteins has been identified as the cause of several
neurodegenerative diseases in humans (for review see (La
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Spada and Taylor, 2003).

Expression of FoxP2 during embryogenesis
Expression of FoxP2 begins in zebrafish at 20-somites in the

dorsal telencephalon (Fig. 2A, C). When we compared the FoxP2
expression pattern to the expression pattern of other genes
transcribed at this stage, we found that FoxP2 expression is very
similar to the expression pattern of the emx homeobox genes
(Kawahara and Dawid, 2002, Morita et al., 1995). However, in
contrast to emx1 (Kawahara and Dawid, 2002), FoxP2 does not

1

zFoxP2 MMQESANETISNSSMSQNGMSSLSSQLDAGSRDGRSSGETSSEVSAVELLHLQQQQALQA

mFoxp2 MMQESVTETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELLHLQQQQALQA

hFOXP2 MMQESATETISNSSMNQNGMSTLSSQLDAGSRDGRSSGDTSSEVSTVELLHLQQQQALQA

61

zFoxP2 ARQLLLQQPGSGLKSPKNNDKQRPLQVPVSVAMMSPQVITPQQMQQILQQQVLSPQQLQA

mFoxp2 ARQLLLQQQTSGLKSPKSSEKQRPLQVPVSVAMMTPQVITPQQMQQILQQQVLSPQQLQA

hFOXP2 ARQLLLQQQTSGLKSPKSSDKQRPLQVPVSVAMMTPQVITPQQMQQILQQQVLSPQQLQA

121

zFoxP2 LLQQQQAVMLQQQHLQEFYKKQQEQLHLQLLQQQ--------------------------

mFoxp2 LLQQQQAVMLQQQQLQEFYKKQQEQLHLQLLQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

hFOXP2 LLQQQQAVMLQQQQLQEFYKKQQEQLHLQLLQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

181

zFoxP2 -----------HPGKQAKEQQQQQQ----LAAQQLVFQQQLLQMQQLQQQQHLLNMQRQG

mFoxp2 QQQQQQQQQQQHPGKQAKEQQQQQQQQQ-LAAQQLVFQQQLLQMQQLQQQQHLLSLQRQG

hFOXP2 QQQQQQQQQQQHPGKQAKEQQQQQQQQQQLAAQQLVFQQQLLQMQQLQQQQHLLSLQRQG

241

zFoxP2 LLSMPPGPGQPTLPGQTLPPAGLSPAELQQLWKDVTASHTMEDNGMKHSGLDLSTNNNTS

mFoxp2 LISIPPG--QAALPVQSLPQAGLSPAEIQQLWKEVTGVHSMEDNGIKHGGLDLTTNNSSS

hFOXP2 LISIPPG--QAALPVQSLPQAGLSPAEIQQLWKEVTGVHSMEDNGIKHGGLDLTTNNSSS

301 Zinc Finger

zFoxP2 TTSTSNPKASPPITHHSMSNGQSPALNNRRESSLHEETAVSHSLYGHGVCKWPGCESICD

mFoxp2 TTSSTTSKASPPITHHSIVNGQSSVLNARRDSSSHEETGASHTLYGHGVCKWPGCESICE

hFOXP2 TTSSNTSKASPPITHHSIVNGQSSVLSARRDSSSHEETGASHTLYGHGVCKWPGCESICE

361

zFoxP2 DFGQFLKHLNNEHALDDRSTAQCRVQMQVVQQLEIQLSKERERLQAMMAHLHMRPSEPKP

mFoxp2 DFGQFLKHLNNEHALDDRSTAQCRVQMQVVQQLEIQLSKERERLQAMMTHLHMRPSEPKP

hFOXP2 DFGQFLKHLNNEHALDDRSTAQCRVQMQVVQQLEIQLSKERERLQAMMTHLHMRPSEPKP

421

zFoxP2 SPKPLNLVSSVTMSKNLPSISPPNLPQTPTTPTAPVTPLSQMPQVPNVLSPANVPSMGAM

mFoxp2 SPKPLNLVSSVTMSKNMLETSPQSLPQTPTTPTAPVTPITQGP---SVITPASVPNVGAI

hFOXP2 SPKPLNLVSSVTMSKNMLETSPQSLPQTPTTPTAPVTPITQGP---SVITPASVPNVGAI

481

zFoxP2 RRRHTDKYSMALSSEIAPNYEFYKNADVRPPFTYATLIRQAIMESSDRQLTLNEIYSWFT

mFoxp2 RRRHSDKYNIPMSSEIAPNYEFYKNADVRPPFTYATLIRQAIMESSDRQLTLNEIYSWFT

hFOXP2 RRRHSDKYNIPMSSEIAPNYEFYKNADVRPPFTYATLIRQAIMESSDRQLTLNEIYSWFT

541 Forkhead domain

zFoxP2 RTFAYFRRNAATWKNAVRHNLSLHKCFVRVENVKGAVWTVDEMEYQKRRSQKITGSPTLV

mFoxp2 RTFAYFRRSAATWKNAVRHNLSLHKCFVRVENVKGAVWTVDEVEYQKRRSQKITGSPTLV

hFOXP2 RTFAYFRRNAATWKNAVRHNLSLHKCFVRVENVKGAVWTVDEVEYQKRRSQKITGSPTLV

601

zFoxP2 KNLPSSLGYGAALNASLQAALAETTLPLLGNPGLMNSASAMMGASPPVMMSGSPTGLLQG

mFoxp2 KNIPTSLGYGAALNASLQAALAESSLPLLSNPGLINNAS---------------SGLLQA

hFOXP2 KNIPTSLGYGAALNASLQAALAESSLPLLSNPGLINNAS---------------SGLLQA

661

zFoxP2 TTHEELNGTLDHLDTNGHSSPGYS--PHTHLPPIHVKEEPLNMEDEDCPMSLVTTANHSP

mFoxp2 V-HEDLNGSLDHIDSNGNSSPGCSPQPHIHS--IHVKEEPVIAEDEDCPMSLVTTANHSP

hFOXP2 V-HEDLNGSLDHIDSNGNSSPGCSPQPHIHS--IHVKEEPVIAEDEDCPMSLVTTANHSP

721

zFoxP2 ELDDDRELEEGNLSEDLE

mFoxp2 ELEDDREIEEEPLSEDLE

hFOXP2 ELEDDREIEEEPLSEDLE

Fig. 1. Amino acid sequence comparison between zebrafish FoxP2 protein and its

orthologues in mouse and human. Identical amino acids are in bold. The absence of
residues at the corresponding region is indicated by dashes. The zinc finger and the
forkhead domain are underlined.

show expression in the pineal gland, in pronephric duct and the
urogenital opening (Fig. 2B). The expression of FoxP2 in the
dorsal telencephalon is partially overlapping with that of emx1. A
double in situ hybridization demonstrates that emx1 expression at
the 20-somite stage is limited to a subdomain of Foxp2 expression
(Fig. 2D). Expression of Foxp2 becomes more complex in the
brain after 48 hours of development. At 7 days post fertilization,
there is expression of FoxP2 in several domains throughout the
entire brain (Fig. 3A). The highest levels of FoxP2 expression can
be observed in the presumptive optic tectum.

Expression of FoxP2 in the adult brain
In the adult brain, the periventicular gray zone

of the optic tectum shows very high levels of
FoxP2 expression (Fig. 3B, D and E). However,
specific regions in the ventral forebrain and the
hypothalamus display high levels of FoxP2 tran-
scripts as well. The ventral telencephalon (Fig.
3B, most anterior expression domain) and the
preoptic area show high levels of FoxP2 tran-
scripts (Fig. 3B, C). There is strong expression in
the periventricular pretectum and weaker ex-
pression in the dorsal thalamus and ventral pos-
terior tuberculum (Fig. 3D). The rostral cerebel-
lum does not express this gene (Fig. 3E, F), while
the caudal lobe of cerebellum does (Fig. 3G).
The caudal lobe of cerebellum corresponds to
the vestibulocerebellum of mammals. The cer-
ebellar FoxP2 expression is in a conspicuous
band of seemingly large cells, possibly corre-
sponding to Purkinje cells. Specific cells in the
superior reticular nucleus show distinct expres-
sion of FoxP2, as do some cells in the medial
octavolateralis nucleus, which is the primary sen-
sory nucleus for the lateral line (Mueller et al.,
2004).

The functional significance of the temporo-
spatial expression of FoxP2 in zebrafish neural
tissue and for that matter in other species, is yet
to be elucidated. There is a great shift of expres-
sion between the initial expression of FoxP2 in
the dorsal telencephalon and the widespread,
but region-specific expression in the adult brain.
The significance of this shift is not understood,
but it is likely that FoxP2 plays a different role
during the early development of the brain than it
does later in the differentiated neuronal cells. If
the expression of FoxP2 is any indication of its
sites of function, then FoxP2 is clearly involved in
several aspects of brain development and func-
tion unrelated to language formation. There are
many simmilarities of FoxP2 expression in the
brains of birds and crocodiles (Haesler et al.,
2004) when compared to that of zebrafish, e.g.,
ventral telencephalon (possibly striatum), optic
tectum, torus semicircularis/inferior colliculus,
cerebellum, dorsal thalamus and hypothalamus.
It is the challenge for the future to determine the
significance of FoxP2 expression in the different
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brain areas.
While this manuscript was under review, a paper by (Bonkowsky

and Chien, 2005) described expression of FoxP2 during early
stages of zebrafish development. These authors have demon-
strated that there is a widespread expression of FoxP2 in the
neural system of zebrafish during the first three days of develop-
ment.

Experimental Procedures

Isolation of zebrafish FoxP2
We used PCR and degenerate primers to isolate a cDNA

fragment of the FoxP2 gene encoding the forkhead and the zinc
finger domain. The PCR reaction was carried out on reverse
transcribed cDNA generated from 9-16 day old zebrafish embryos

according to manufacturer’s instructions. Degenerate primers
encoding the following peptides were used: FoxP2-F: HGVCKW;
FoxP2-R: -HKCFVRV

After sequencing the isolated PCR fragment, we found several
EST fragments with high homology in the GenBank database
(BQ617568; BQ783717).

Whole mount in situ hybridization and histology
Whole mount in situ hybridization was performed according to

(Harland, 1991). For double in situ hybridization we followed the
protocol of (Hauptmann and Gerster, 1994). For sections, the
zebrafish brain was embedded in paraffin and 7 micrometers
sections were made for in situ hybridization. Sections were de-
waxed in xylene, rehydrated and hybridized with a digoxigenin-
labeled probe. After the chromogenic reaction, the sections were

Fig. 2. (Left) Expression of FoxP2 during

zebrafish embryogenesis. (A) Lateral view of
in situ hybridization of FoxP2 probe to a 20-
somite zebrafish embryo. The expression is in
the dorsal telencephalon (arrow). (B) Lateral
view of in situ hybridization of Emx1 probe to a
20-somite zebrafish embryo. Expression is in

Fig. 3. (Right) Expression of FoxP2 in the zebrafish brain. (A) Dorsal view of in situ hybridization of FoxP2 probe to the isolated brain from a 7 day-
old zebrafish. The isolated brain was opened along its dorsal axis and flattened. Anterior is to the left. (B) Sagittal section of a brain from a 3 months
old zebrafish hybridized with a FoxP2 probe. Vertical lines indicate the positions of cross sections in images (C - H). Cross sections, hybridized with
a FoxP2 probe, through the (C) telencephalon, (D)optic tectum, (E) optic tectum, cerebellum and hypothalamus, (F) cerebellum, (G) caudal lobe of
the cerebellum and the medulla oblongata. Arrow in (F) indicates the expression in the superior reticular formation. Arrow in (G) indicates expression
in the medial octavolateralis nucleus. (H) A section caudal to (G) shows no expression of FoxP2. Abbreviations: Cc, cerebellar crest; CaC, caudal lobe
of cerebellum; CCe, corpus cerebelli; DIL, diffuse nucleus of the inferior hypothalamic lobe; Dt, dorsal thalamus; HB, hindbrain; HT, hypothalamus;
MO, medulla oblongata; MoN, medial octavolateralis nucleus; PgZ, periventicular gray zone of the optic tectum; Po, preoptic area;  Pvpt, periventricular
pretectum; SRN, superior reticular nucleus; TeO, optic tectum; TS, torus semicircularis; Vpt, ventral posterior tuberculum.

the dorsal telencephalon (T), pineal gland (P) and the urogenital opening (U). (C) Dorsal view of the head region from a 20-somite zebrafish embryo
hybridized with a FoxP2 probe. (D) Double in situ hybridization of a FoxP2 probe (red) and Emx1 (black) to the head region of a 20-somite zebrafish
embryo. Dorsal view.

A

B

C D

A B

C D E

F G H
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counterstained with hematoxylin and eosin.
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