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ABSTRACT  Surface patterns can emerge during growth of anisotropic tissues because of surface

buckling. This morphogenetic scenario is examined in the present paper based on a simple

phenomenological theory of tissue growth. In particular, we show that constrained growth can lead

to tissue compression, which in turn may result in surface buckling of the tissue. The latter means

the appearance of wavy patterns on the surface. These patterns decay away from the surface. It is

interesting that the critical magnitude of the parameter of mass supply, which corresponds to

surface buckling, is independent of the pattern wavelength and various patterns can generally be

generated in growth. Results of theoretical analysis show that the surface buckling scenario is

realistic if the growing tissue matches the following two conditions.  First, compression should

appear during tissue growth. Second, the tissue should exhibit strong anisotropy. The former

condition does not necessarily mean geometric constraints: inhomogeneous growth or material

inhomogeneity and anisotropy can lead to the appearance of compressive stresses. The latter

condition is typical of some tissues with fiber reinforcement in planes parallel to the surface. In the

latter case, the tissue material is much softer in the out-of-plane direction than in plane. The creation

of patterns by restraining tissue growth and forcing the surface to buckle represents a challenging

experimental problem.
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«I …assert that the process of tissue formation is in many
ways the cellular equivalent of molecular self-assembly and
that the appropriate language in which to analyze morpho-
genesis is that of the differential equation…»

Jonathan Bard, «Morphogenesis» (1990)

Introduction

Bard (1990) discusses three viewpoints on tissue development.
They are the genetic view, the epigenetic view, and the middle
view. According to the genetic view, the tissue formation is entirely
determined by the DNA-coded information stored in the genome
and interpreted by cells. According to the epigenetic view, the
development of the tissue structure is affected by its physical
environment. The middle view is a mixture of the first two views,
which emphasizes that the weight of a specific scenario, genetic or
epigenetic, depends on the case under consideration. It should not
be missed that the literature provides theoretical and experimental
arguments in favor of any scenario that are equally convincing or
vague (depending on a reader background).

Strengthening arguments in favor of the epigenetic/middle view
Newman and Muller (2000), and Cowin (2004) suggest three
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epigenetic (sub-) views on the tissue development. The first one is
the interactions of cell metabolism with the physicochemical envi-
ronment within and external to the organism. This view is rooted in
the celebrated work by Turing (1952) where the idea that the
diffusing patterns of reacting chemicals can form steady-state
heterogeneous spatial patterns was put forward. Many research-
ers have further developed this idea and the summary of results
can be found in Murray’s book (2003) where chemo-mechanical
coupling is also considered. The second view associates the
epigenetic mechanism with interactions of tissue masses with the
tissue’s physical environment. In the case of bone, for instance, it
is thought that mechanical loads are sensed by osteocytes, which
transform the mechanical signal in a biochemical one -
mechanotransduction. The latter, in its turn, changes the bone
development program. Such scenario is (arguably) known by the
name of Wolff’s law (Cowin, 2001). The third view associates the
epigenetic mechanism with interactions among the tissues them-
selves. During such interactions, compressive stresses can ap-
pear which lead to the mechanical buckling of the tissue structure
accompanied by the formation of the buckling modes - morphoge-
netic patterns. Green (1999) and Steele (2000) and their associ-
ates who correlated tissue morphogenesis with the problems of
buckling of beams, plates, and shells on elastic foundation ad-
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vanced this scenario.
We consider a theoretical argument, which can potentially unify

the different views on epigenetic morphogenesis. We formulate a
continuum mechanics theory of tissue growth which is different
from many existing theories in that it is simple, microstructurally
motivated, and free of hidden variables, i.e. experimentally trac-
table (Volokh, 2004a,b; Volokh and Lev, 2005). Then we apply this
theory to a model problem of tissue growth allowing for an analyti-
cal solution. We show that restrained growth may lead to the
compressive stress in the bulk tissue, which can initiate the
phenomenon known as surface buckling when only a material layer
close to the surface buckles producing morphogenetic patterns
while the whole bulk tissue remains undisturbed. Our approach has
somewhat common with all three views on epigenetic morphogen-
esis. First, its mathematical structure – partial differential equations
– is similar to that of Turing-Oster-Murray including balance equa-
tion of the reaction diffusion type. Second, the terms corresponding
to tissue remodeling, connected to mechanotransduction, are
included in the formulation of equations (though this issue will not
be explored in the present work yet) similar to the adaptive growth
theories (Cowin and Hegedus, 1976). Third, the possibility of the
growth bifurcation in the form of elastic buckling is considered
resembling the ideas of Green and Steele on structural instability
as a source of patterning. It is worth noting that all these features
are the natural outcome of the proposed theory without additional
ad hoc assumptions.

Governing equations of mechanics of tissue growth

Biological or biochemical mechanisms of growth are not well
understood though a plenty of scenarios exist in the biological
literature. There is no doubt that biochemistry is the driving force of
tissue growth. Understanding the biochemistry of growth is most
desirable. Biochemistry can explain why a tissue grows. That is not
enough, however. It is also necessary to know how a tissue grows.
The latter means macroscopic description in terms of the macro-
scopically measurable parameters. The macroscopic parameters

of tissue growth seem to be self-evident: mass and form (configu-
ration). Observations on plants and animals, including human
beings, during the lifetime give the strict experimental proof of the
change of mass and configuration.

The assumption that the continuous deformation and mass flow
can describe growth of living bodies is central for further develop-
ment. To make sound this assumption, geometry of growth should
be analyzed qualitatively. Sharp distinction between the real physi-
cal material and the mathematical concept of material point should
be kept in mind. This distinction is illustrated in Fig. 1 where the
conventional deformation (on the left side) is compared to the
deformation-growth (on the right side). It is assumed that material
volume increases during the deformation while the ‘number’ of
material points remains the same. The concept of the material point
is purely mathematical. Material points do not exist: they are
mathematical abstractions. Material always occupies some vol-
ume. One means a very small material volume saying ‘material
point’. Every material point enlarges during the deformation to-
gether with the whole body as it is shown in the figure. Under ‘higher
resolution’ it can be seen that a material point is a very small
physical volume, which in the case of living tissues includes cells,
molecules, and various tissue particles. Conventional deformation
preserves the same material particles inside the considered refer-
ential point-volume, the referential mass density is not changing
during deformation: ρ = constant . This is the mathematical ex-
pression of the mass conservation law in closed systems. During
deformation-growth (on the right-hand side of the figure) the
‘number’ of material points still remains the same what allows for
using the standard continuum mechanics description, however,
the number of cells, molecules, and etc is changing inside the point-
volume. The latter means that the referential mass density is
changing during deformation-growth: ρ ≠ constant , and mass is
not conserved. The violation of mass conservation is inherent in
open systems exchanging material with their environment.

While the qualitative analysis of the geometry and physics of
tissue growth justifies the use of continuum mechanics for an open
system, it is insufficient for the development of the particular

Fig. 1. Closed versus open systems: mass conservation versus mass flow.

equations of a macroscopic phenom-
enological theory. Such development
requires some microscopic reasoning
in order to motivate the continuum field
and constitutive equations. It seems
that a reasonable insight into the tissue
growth mechanisms can be gained by
considering a very simple toy-tissue
model (see also Gordon and Jacobson,
1978). Such model is presented in Fig.
2. The regular initial tissue can be seen
on the top of the figure. This is a collec-
tion of the regularly packed balls. The
balls are interpreted as the tissue el-
ementary components – cells, molecules
of the extracellular matrix, and etc. The
balls are arranged in a regular network
for the sake of simplicity and clarity.
They can be organized more chaotically
– this does not affect the subsequent
qualitative analysis. Let us assume now
that a new material, i.e. a number of new
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able model of tissue growth. Such model can be constructed
physically, of course. It seems that the latter is not necessary and
the toy-tissue model can be easily imagined. The result of such
thought-experiment is shadowed in the figure and it can be de-
scribed as follows:
(a) The number of the balls in the toy-tissue increases with the
supply of the new ones.
(b) The new balls are concentrated at the edge of the tube and they
do not spread uniformly over the tissue.
(c) The new balls cannot be accommodated at the point of their
supply – the edge of the tube: they tend to spread over the area at
the vicinity of the edge and the packing of the balls gets denser
around the edge of the tube.
(d) The more balls are injected the less room remains for the new
ones.
(e) The new balls press the old ones.
(f) The new balls tend to expand the area occupied by the tissue
when the overall ball rearrangement reaches the tissue surface.

These six qualitative features of the toy-tissue microscopic
behavior under the material supply can be translated into the
language of the macroscopic theory accordingly:
(A) Mass of the tissue grows.
(B) Mass growth is not uniform – the mass density changes from
one point to another.
(C) There is a diffusion of mass.
(D) The diffusion is restricted by the existing tissue structure and its
mass density: the denser is the tissue the less material it can
accommodate.
(E) Growth is accompanied by stresses.
(F) The expansion of the tissue is volumetric – it is analogous to the
thermal expansion of structural materials as steel, for example.

Three first features (A, B, and C) prompt the form of the mass
balance law in equilibrium ( ∂ ∂ =ρ / t 0 ):

ψ ξi i, + = 0 (2.1)

where ψ i  is the vector of mass flux and ξ  is the volumetric mass
supply. It is convenient to manipulate equations by designating

partial derivatives with respect to Cartesian coordinates x x x1 2 3, ,{ }
with comma: ∂ ∂ ≡( ) / ( ),x i i ; and by summing from 1 to 3 over
repeated indices: ψ ψ ψ ψi i, , , ,= + +11 2 2 3 3  .

Indeed, the mass change means the failure of the mass conser-
vation law, which covers most theories of mechanics, and it means
the necessity to introduce a full-scale mass balance for an open
system. The fact that non-uniform mass growth is related with the
diffusion of mass is very important. It means that the mass balance
law should include both the volumetric mass source and the
surface mass flux. The latter is missed in many theories of growth.
The absence of mass diffusion in the theory leads to a nonphysical
conclusion that tissue density can change only at the point of
material supply, i.e. pointwisely. Mass diffusion should take place
in order to accommodate a non-uniform mass supply.
Boundary conditions complete the law of mass balance:

ρ ρ ψ φ= =∗ ∗or  i in (2.2)

where the asterisk means a given magnitude and ni  is a unit
outward vector, which is normal to the surface.
Momentum balance and corresponding boundary conditions take
the traditional form in the case of a quasi-static (equilibrium)
process

σ ij j, = 0 (2.3)
u u n Ti i ij j i= =∗ ∗or σ (2.4)

where σ ij  is the stress tensor; ui  is the displacement vector; and
Ti  is the surface traction.
Three last features (D, E, and F) of the toy-tissue model motivate
the constitutive law. They suggest that the stress-strain relations
should be analogous to thermoelasticty where the role of the
temperature is played by the mass density: the increase of the
mass density results in the volume expansion of the tissue:

σ ρ ρ ηij ijmn m n ijC u= − − ∗
, ( )0 (2.5)

where Cijmn  is the tensor of elastic moduli enjoying minor and major
symmetries; ρ0

∗  is the initial distribution of mass density; and ηij  is
a symmetric tensor of growth moduli.
On the other hand, the additional mass supply should be prevented
by the tissue: the denser tissue the less is the new mass accom-
modation:

ξ ω σ ρ ρ γ= + − − ∗f um n ij( , ) ( ), 0 (2.6)

where ω > 0  is the genetic mass supply, which  is analogous to a
quasi-static mechanical load (in contrast to the latter, however, ω
is controlled by the tissue itself and its proper determination
requires experiments); f is the epigenetic mass supply1 , which
should depend on stress and/or strain measures (its correct
expression is a key problem when tissue remodeling is consid-
ered); the last term on the right-hand side of Eq.(2.6) including
coefficient of tissue resistance, γ > 0 , reflects the resistance of the
tissue to accommodate new mass for increasing mass density

material source

Fig. 2. Toy-tissue microscopic

model: regular (top), point mass
supply (bottom).

balls, is supplied pointwisely as it
is shown on the bottom of Fig. 2.
This supply is considered as a
result of injection: the tube with
the new material is a syringe.
Usually, the new material is cre-
ated in real tissues in a more
complicated manner following a
chain of biochemical transforma-
tions. However, the finally pro-
duced new material still appears
pointwisely from the existing cells.
For example, the role of the ma-
terial supplying tubes is played
by the osteoblasts in the case of
the bone tissue. Thus, the injec-
tion of the balls is a quite reason-

1 Genetic and epigenetic mass supplies should not be confused with the
genetic and epigenetic patterning. The patterning can be epigenetic even
though mass supply is purely genetic.
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(roughly speaking, the more new material the less room for it
remains).
Finally, we introduce the constitutive equation for mass flux in the
simplest possible form (Fick’s law):

ψ β ρ ρi i= − ∗( ),0 (2.7)

where β  is the mass conductivity of the material.
The similarity between Eqs.(2.5) and (2.7) of growth and

thermoelasticity is obvious after replacing the mass density incre-
ment by the temperature increment, mass flux by heat flux, mass
conductivity by thermal conductivity, and etc. In this case Eq.(2.5)
is nothing but the thermoelastic generalization of the Hooke’s law,
and Eq.(2.7) is just the Fourier law of heat conduction. The
constitutive equation analogous to (2.6), however, is usually ab-
sent in thermoelasticity because of the lack of volumetric heat
sources. The thermoelastic analogy allows for the better under-
standing of parameters of the growth model. For example, the
vector of mass flux is analogous to the vector of heat flux. We feel
the heat flow by changing temperature without directly defining
what the heat is. The same is true for the mass flow. We ‘feel’ it by
changing mass density without directly defining what it is.

Substituting the constitutive law (2.5)-(2.7) in the field equations
(2.1) and (2.3) and ignoring kinetics of growth (quasi-equilibrium
growth: ∂ ∂ =ρ / t 0 ), we get a system of coupled equations in
terms of mass densities and displacements

β ρ ρ γ ρ ρ

η ρ ρ

( ) ( )

(

,

,

− − − + =

− −

∗ ∗
0 0

0

0ii

ijmn m nj ij

f

C u ∗∗ =





 ),j 0
(2.8)

Boundary conditions (2.2) and (2.4) complete the formulation.
It is important to emphasize that we tacitly assumed that deforma-
tions are small during the growth process. Such formulation is easy
to understand and, besides, it is enough for our subsequent
analysis. However, such formulation is not enough for the accurate
setting of the incremental boundary value problem, which is

considered below. To this end, large deformations are addressed
in Appendix A.
In order to analyze surface buckling of a growing tissue we will need
an incremental formulation of the considered field and constitutive
equations. In general, both displacement and mass density incre-
ment should be considered. However, we will ignore the remodel-
ing issue and drop the epigenetic factor f from the equations. This
allows for uncoupling the deformation/growth equations and as-
suming equilibrium bifurcation only, i.e. mass density is not chang-
ing because of the equilibrium bifurcation. In this case, the incre-
mental equilibrium equations, constitutive law, and boundary con-
ditions take the following forms accordingly (see Appendix B)

σ ij j, = 0 (2.9)
    σ σij ijkn k n mjkn i m k n ijmn k m k nC u C u u C u u= + + +, , , , , jjn i nu , (2.10)

u ni ij j= =0 0or σ (2.11)

where the bar above the letters means the corresponding incre-
ment.

Example of surface buckling in volumetric growth

We apply the general theory developed in the previous section to
the problem of growth of a half plane shown in Fig. 3 (top). It is
assumed that deformation of the material is restrained in the
horizontal direction without defining the length of the restrained
area. It is also assumed that the surface of the growing material is
traction-free. In this case, we have field equations and boundary
conditions in the following 2D form

ψ ψ ξ11 2 2 0, ,+ + = (3.1)
ψ 1 20 0( , )x = (3.2)

σ σ
σ σ

111 12 2

211 22 2

0

0
, ,

, ,

+ =
+ =






(3.3)

σ
σ

11 2

21 2

0 0

0 0

( , )

( , )

x

x

=
=





(3.4)

Constitutive equations take the form

σ η ρ ρ

σ
11 1111 11 1122 2 2 11 0

22 2211

= + − −

=

∗C u C u

C
, , ( )

uu C u

C u
11 2222 2 2 22 0

12 21 1212 1

, ,

,

( )

(

+ − −
= =

∗η ρ ρ
σ σ 22 2 1+








 u , )

(3.5)

ξ ω γ ρ ρ= − − ∗( )0 (3.6)
ψ β ρ ρ

ψ β ρ ρ
1 0 1

2 0 2

= −

= −







∗

∗

( )

( )

,

,
(3.7)

The following solution of the described boundary value problem
can be checked by direct substitution in Eqs.(3.1)-(3.7)

   

ρ ρ ω γ
ωη γ

σ η

− =
= ≡ > =

= −

∗
0

11 11 1111

22

0 0

/

/ ;

(
, ,u C a ui j

222 1111 11 2211 0 0C C a b ij/ ) ;η σ− = − < =









(3.8)

The physical meaning of this solution is very simple: compressive
stresses appear in the horizontal direction, parallel to the freeFig. 3. An example of surface buckling in restrained tissue growth.
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surface because of constrained growth of the tissue (it can expand
freely in the vertical direction only). This solution describes growth
of the tissue sample for the gradually increasing volumetric mass
supply ω . The peaceful growth lasts until the equilibrium state
bifurcates producing surface patterns. In order to examine this
bifurcation we have to consider the incremental boundary value
problem trying to find a nontrivial initial post-bifurcation solution of
the surface buckling type.
The incremental constitutive equations take the form:

σ11 1111 11 1122 2 2 1111 11 11222= + + +C u C u C au C au, , , 22 2

22 2211 11 2222 2 2 2211 11 2

,

, , , ,σ = + + −C u C u C au b u 22

12 1212 12 2 1 1212 12 2 1 1σ = + + + +C u u C a u u C( ) ( ), , , , 2212 12 12

21 1212 12 2 1 1212

au bu

C u u C au
, ,

, ,( )

−
= + +σ 112,











(3.9)

Equilibrium equations and corresponding boundary conditions can
be written as

h u h u h u

h u h u h
1 111 2 2 21 3 122

4 2 11 5 112 6

0, , ,

, ,

+ + =
+ + uu2 22 0, =






(3.10)

σ
σ

11 1 7 11 8 2 2

21 1 9 2 1

0 0

0

( )

( )
, ,

,

x h u h u

x h u h

= = + =
= = + 110 12

1 1

2 1

0

0

0

u

u x

u x

,

( )

( )

=
= −∞ =
= −∞ =











(3.11)

Where

h C C a C

h C C C
1 1111 1111 1111

2 1122 1212 11

2= +
= + +

( ) /

( 222 1212 1111

3 1212 1212 1112

a C a C

h C C a b C

+
= + −

) /

( ) / 11

4 1212 1111

5 1212 1212 2211 221

h C C

h C C a C C

=
= + + +

/

( 11 1111

6 2222 1111

7 1111 1112

a C

h C b C

h C C

) /

( ) /

(

= −
= + 11 1111

8 1122 1122 1111

9 1212

a C

h C C a C

h C C

) /

( ) /

/

= +
= 11111

10 1212 1212 1111h C C a C= +



















( ) /





(3.12)

We present solution in the form

u y x x

u y x x
1 1 1 2

2 2 1 2

=
=





( )cos

( )sin

θ
θ

(3.13)

which allows for the wavy pattern formation in the horizontal
direction.
Substituting (3.13) in (3.10)-(3.11) we have the following equilib-
rium equations and boundary conditions accordingly

h
y

x
h

y
x

h y

h
y
x

h

1

2
1

1
2 2

2

1

2
3 1

4

2
2

1
2 5

0
∂
∂

+
∂
∂

− =

∂
∂

−

θ θ

θ
∂∂
∂

− =











y
x

h y1

1

2
6 2 0θ

(3.14)

σ θ

σ

11 1 7
1

1
8 2

21 1 9
2

0 0

0

( )

( )

x h
y
x

h y

x h
y
x

= =
∂
∂

+ =

= =
∂
∂ 11

10 1

1 1

2 1

0

0

0

− =

= −∞ =
= −∞ =















θh y

u x

u x

( )

( )

(3.15)

Let us consider solution of (3.14) and (3.15) in the form

y A r x

y B r x
1 1

2 1

=
=





exp( )

exp( )

θ
θ

(3.16)

which means decay of the deformation and stresses away from the
surface in the vertical direction.
Substituting (3.16) in (3.14) we get

( )

( )

h r h A h rB

h rA h r h B
1

2
3 2

5 4
2

6

0

0

− + =

− + − =






(3.17)

A nontrivial solution of this system of equations is obtained when

h h r h h h h h h r h h1 4
4

5 2 3 4 1 6
2

6 3 0+ − − + =( ) (3.18)

This equation has four roots r r r r1 1 2 2, , ,− − . If they are real then we
can choose two positive roots, say r r1 2 0, > , and entirely omit
negative roots what satisfies boundary conditions on infinity (3.153,4).
Substituting these roots in Eq.(3.17) we can find coefficient A as a
function of coefficient B:

A H B H h r h h r

A H B H h r
1 1 1 1 4 1

2
6 5 1

2 2 2 2 4 2
2

= = −

= =

, ( ) /

, ( −−





 h h r6 5 2) /
(3.19)

Thus the solution of Eq.(3.14) with boundary conditions (3.153,4)
can be written as

y H B r x H B r x

y B r
1 1 1 1 1 2 2 2 1

2 1 1

= +
=

exp( ) exp( )

exp(

θ θ
θθ θx B r x1 2 2 1) exp( )+





(3.20)

It remains to satisfy boundary conditions on the free surface.
Substituting (3.20) in (3.151,2) we have

( ) ( )

( )

h H r h B h H r h B

h r h H B
7 1 1 8 1 7 2 2 8 2

9 1 10 1 1

0+ + + =
− ++ − =



 ( )h r h H B9 2 10 2 2 0

(3.21)

This system of equations possesses a nontrivial solution when

(3.22)
g a h H r h h r h H h H r h h( ) ( )( ) ( )(= + − − +7 1 1 8 9 2 10 2 7 2 2 8 9rr h H1 10 1 0− =)

Consider a material with the following elasticity and growth param-
eters:

(3.23)
C C C C C1111 2222 1122 2211 12121 100 0 5 1= = = = =; ; . ; ; η111 221 1= =; η
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It should not be missed that the dimension of this parameters is of
no interest because only their relative magnitudes matter. In this
case the smallest positive root of Eq.(3.22) is

a ≈ 20 (3.24)

which corresponds to the positive solution of Eq.(3.18) and, conse-
quently, provides the desirable surface buckling solution for the
initial post-bifurcation equilibrium.

It is worth emphasizing that the ‘surface’ solution of the incre-
mental problem does not necessarily exist. For example, in the
case of material isotropy, where2  Cijmn ij mn im jn= +λδ δ µδ δ2   the
‘surface’ solution does not exist for various reasonably chosen
values of Lame parameters λ µ and .

Discussion and conclusions

A novel mechanism of tissue morphogenesis has been pro-
posed. According to it, surface patterns can emerge during growth
of anisotropic tissues because of surface buckling. This scenario
has been examined based on a simple phenomenological theory
of tissue growth. It is shown, particularly, that constrained growth
can lead to tissue compression, which, in its turn, may result in
surface buckling of the tissue. The latter means the appearance of
wavy patterns on the surface. These patterns decay away from the
surface. It is interesting that the critical magnitude of the mass
supply parameter, which corresponds to the surface buckling, is
independent of the pattern wavelength and, generally, various
patterns can be generated in growth. The results of the performed
theoretical analysis show that the surface buckling scenario is
realistic if the growing tissue matches two following conditions.
First, compression should appear during tissue growth. Second,
the tissue should exhibit strong anisotropy. The former condition
does not necessarily mean geometric constraints: inhomoge-
neous growth or material inhomogeneity and anisotropy can lead
to the appearance of compressive stresses (see below). The latter
condition is typical of some tissues with fiber reinforcement in
planes parallel to the surface. In this case, the tissue material is
much softer in the out-of-plane direction than in plane.

It is worth noting again that we considered an example where
compression appeared because of the tissue geometric constraint,
what physically means interaction among various tissues. How-
ever, compressive stresses can appear in a different way without
the tissue interactions. Let us consider a growth scenario where
material is supplied at the free surface (surface growth). In this
case, we set ω = 0  in the governing equations and impose new
boundary conditions on the mass density at the free surface
ρ ρ ρ( )x1 00= = +∗ ∗  where a parameter of the surface mass supply
is ρ∗ . In this case, the growing half plane, considered above, can
be described by the following solution of the corresponding bound-
ary value problem:

ρ ρ ρ τ τ γ β

ρ η τ

− = =

=

∗ ∗

∗

0 1

1 11 1111

exp( ); /

( / )exp(

x

u C ττ
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0 0) ;

( / )exp(
,> =

= − − ττ σx ij1 0 0) ;< =










This solution is of the boundary layer type, that is nonzero
density, stress, and displacement fields are concentrated near the
surface and they decay away from the surface. The properly
defined elastic parameters may lead to the appearance of the
compressive stresses parallel to the free surface ( x1 0= ). Thus,
inhomogeneous growth is a constrained growth: material of the
boundary layer tends to expand while the bulk material prevents
from this expansion. It would be interesting to analyze the bifurca-
tion and possible buckling of the surface in this case. Unfortunately,
this is not simple because the coefficients of the incremental
boundary value problem get inhomogeneous and a direct analyti-
cal solution is hardly available. Numerical analysis is desirable.

One of the remarkable features of the obtained analytical
solution is the fact that the bifurcation of the equilibrium can create
unlimited and unpredictable variety of tissue patterns because the
critical parameter of mass supply does not depend on the pattern
wavelength. This fact may be a consequence of some simplifying
assumptions made in the analysis and, probably, a numerical
solution of a more realistic example would give a finite bifurcation
multiplicity. However, the interpretation of the possible variety of
tissue patterns can have a deeper meaning. It is likely that we are
just unable to decide about the specific patterning based on the
epigenetic scenario only. It can occur that nature decides about
specific patterns through a genetic mechanism, which was not
included in our consideration. This circle of questions remains
highly speculative, of course.

Finally, we have to emphasize that the considered surface
buckling mechanism of the tissue patterning is a purely theoretical
prediction yet. It could be a challenging experimental problem to
create patterns by restraining tissue growth and forcing the surface
to buckle.
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According to the general setting of continuum mechanics (Truesdell
and Noll, 1965; Ogden, 1984) a material point occupying position
XI  in the reference configuration moves to position xi  in the
current configuration . Equilibrium equations and the correspond-
ing boundary conditions take the following form

PiI I, = 0 (A.1)
x x P n Ti i iI I i= =∗ ∗or (A.2)

where PiI  are the components of the 1st Piola-Kirchhoff stress
tensor, which can be interpreted as the i th component of force per
unit reference area on an element of surface in the current
configuration whose normal was in the I th direction in the refer-
ence configuration.

Equations of the steady-state mass balance and the correspond-
ing boundary conditions can be written as follows

ψ ξI I, + = 0 (A.3)
ρ ρ ψ φ= =∗ ∗or I In (A.4)

Let us consider the incremental equilibrium (see also the pioneer-
ing work by Biot, 1963) of the body using the general setting of
Appendix A. In this case

PiI I, = 0 (B.1)
and

x u P ni i iI I= = =0 0or (B.2)

where the increments are barred. Incremental constitutive law
takes the form
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where use having been made of the result
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Constitutive equations can be written in a general form

P P x XiI iI i J K M= ( , , , ), ,ρ ρ (A.5)

ψ ψ ρ ρI I i J K Mx X= ( , , , ), , (A.6)

ξ ξ ρ ρ= ( , , , ), ,x Xi J K M (A.7)

The described deformation/growth boundary value problem fol-
lows the so-called Lagrangean formulation where reference coor-
dinates XI  are independent variables. Such formulation is conve-
nient for solids while fluids are generally described following the
Euler formulation with xi  as independent variables. Of course,
both formulations are physically equivalent being mathematically
different.

If the deformation is small then it is necessary to substitute
x ui I iI i I, ,= +δ  in the above equations and to ignore the small terms
( ui I, ) properly. In this case, the difference between the Lagrangean
and Eulerian formulations disappears.

The symmetric 2nd Piola-Kirchhoff stress tensor SKI  introduced
above does not enjoy clear physical interpretation (except for the
practically important case of small strains and large rotations of
slender bodies). The tensor of elastic moduli C S EIJKL IJ KL= ∂ ∂/
relating the 2nd Piola-Kirchhoff stress tensor SIJ  with the Green
strain tensor EKL  generally depends on deformation.
Now the stress increments take the form

     P C u u u S uiI LIKJ iL i L mK m K m J IJ i J= + + +( )( ), , , ,δ δ (B.6)

In the case of small deformations the terms quadratic in displace-
ment gradients can be ignored

     P C u u u S uiI LIKJ iL mK mK i L iL m K m J IJ i≈ + + +( ), , ,δ δ δ δ ,,J (B.7)

as well as the difference between various stress tensors and upper
and lower case indices.
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