
Developmental Expression Pattern

Expression of ADP-ribosylation factor (ARF)-like protein 6

during mouse embryonic development

TATSUYUKI TAKADA*,1,2, KEIKO IIDA1,2, HIROSHI SASAKI3, MASANORI TAIRA2,4 and HIROSHI KIMURA1,2

1Department of Experimental Radiology, Shiga University of Medical Science, Ohtsu, 2Core Research for Evolutional Science and Technol-
ogy (CREST), Japan Science and Technology Agency, 3Laboratory for Embryonic Induction, RIKEN, Center for Developmental Biology,

Chuo-ku, Kobe and 4Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan

ABSTRACT  ADP-ribosylation factor (ARF)-like protein 6 (ARL6) is a member of the ARF-like protein

(ARL) subfamily of small GTPases (Moss, 1995; Chavrier, 1999). ARLs are highly conserved through

evolution and most of them possess the consensus sequence required for GTP binding and

hydrolysis (Pasquallato, 2002). Among ARLs, ARL6 which was initially isolated from a J2E

erythroleukemic cell line is divergent in its consensus sequences and its expression has been shown

to be limited to the brain and kidney in adult mouse (Ingley, 1999). Recently, it was reported that

mutations of the ARL6  gene cause type 3 Bardet-Biedl syndrome in humans and that ARL6 is

involved in ciliary transport in C. elegans (Chiang, 2004; Fan, 2004). Here, we investigated the

expression pattern of ARL6 during early mouse development by whole-mount in situ hybridization

and found that interestingly, ARL6 mRNA was localized around the node at 7.0-7.5 days post coitum

(dpc) embryos, while weak expression was also found in the ectoderm. At the later stage (8.5 dpc)

ARL6 was expressed in the neural plate and probably in the somites. Based on these results, a

possible role of ARL6 in early development is discussed in relation to the findings in human and C.

elegans (Chiang, 2004; Fan, 2004).
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ADP-ribosylation factors (ARFs) have been reported to play an
important role in intracellular membrane trafficking (Moss, 1995;
Chavrier, 1999). Although ARF-like proteins (ARLs) are very
similar to ARFs in amino acid sequences, their biological function
remains unclear. ARL1 and ARL3 have recently been shown to be
required for localization of GRIP-domain proteins to Golgi mem-
branes (Lowe, 1996; Lu, 2001; Panic, 2003; Setty, 2003). In
addition, the expression of ARL4 and ARL5 was found to be
developmentally regulated (Lin, 2000; Lin, 2002; Schurmann,
2002). These observations suggest the possibility that the ARL
proteins function in membrane traffic which might mediate some
developmental processes. ARL6 was first identified in a J2E
erythroleukemic cell line. The ARL6 transcript is up-regulated
during erythropoietin-induced differentiation of erythroid cells and
down-regulated during interleukin-6-induced macrophage differ-
entiation, suggesting a possible role in hemopoietic development
(Ingley, 1999). In adult mice, ARL6 shows a tissue-specific
expression pattern with the highest expression observed in the
brain and kidney. In addition, yeast two-hybrid screening and co-
immunoprecipitation reportedly show that ARL6 interacts with the
protein-conducting channel subunit SEC61β  (Ingley, 1999;
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Pettersson, 2000). However, its biological functions remain un-
clear. Recently, ARL6 was identified as the gene that causes
Bardet-Biedl syndrome type 3 (BBS3) (Chiang, 2004; Fan, 2004).
Four different homozygous substitutions in the regions including
the GTP binding domain in ARL6 were found to be involved in
BBS3. BBS3 is a multisystemic disorder characterized by obesity,
blindness, polydactyly, renal abnormalities and cognitive impair-
ment. Similar to other BBS’s, BBS3 is also thought to result from
ciliary dysfunction because loss-of-function mutations of ARL6 in
C. elegans impair cilia structure and function (Blacque, 2004).
The observations that ARL6 is specifically expressed in ciliated
cells including sensory neurons and involved in intraflagellar
transport in C. elegans (Chiang, 2004), are good agreement with
its involvement in BBS3.

We isolated ARL6 cDNA during a screen for genes which show
localized expression patterns in the early mouse embryo and
found by RT-PCR that ARL6 mRNA is expressed in the brain of
11.5 dpc embryos. To elucidate the developmental aspect of
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ARL6 function further, we herein report the expression pattern of
ARL6 mRNA during early mouse embryonic development.

There are three domains conserved among ARL family mem-
bers. These domains are thought to be involved in guanine
nucleotide binding and hydrolysis (Moss, 1995). Comparison with
other ARL members showed that ARL6 lacks some consensus
amino acids in these domains; for instance, tryptophan and
glycine in domain II and glutamine in domain III (Fig. 1A). These
were substituted to phenylalanine, serine and methionine, re-
spectively. We also cloned Xenopus ARL6  from cDNA library and
found that Xenopus ARL6 shows 88% identity with mouse ARL6
in deduced amino acid sequence. Importantly, the amino acids of
these domains were completely conserved among the mouse,
human and Xenopus (Fig. 1B). Therefore it is possible that these
substitutions may relate to a specific function of ARL6 with regard
to the GTP binding and hydrolysis. Furthermore, it is noted that
mutations resulting in a nonconservative amino acid change in
threonine 31 of domain I and other mutations in invariable glycine

out the ectoderm (Fig. 2E). The similar
expression pattern was maintained at
early head fold stage, when the node
became morphologically evident (Fig.
2D). At late head fold stage, strong ex-
pression of ARL6 was not restricted to
the node but was observed throughout
embryonic portion (Fig 3 A,B). At later
stage (somite stage, 8.5 dpc), ARL6 ex-
pression was mainly observed in the neu-
ral plate and probably in the somites (Fig.
3 C,D). No obvious signal was observed
in the extraembryonic tissues throughout
the stages analyzed (6.5-8.5 dpc, Figs. 2
and 3). Because ARL4 is reportedly ex-
pressed in the somites and at the junction
of forebrain and midbrain at the 10-12
somite stage (8.5 dpc) (Lin, 2000), the
localization of transcript in the neural
plate is characteristic to ARL6 at this
stage.

Our data showed that ARL6 displays a
dynamic pattern of expression during
early mouse development. Its localized
expression at the node that plays a cen-
tral role in establishing the basic body
plan as the gastrula organizer implies
possible involvement of this small GT-
Pase in early mouse embryonic develop-
ment. Interestingly, our whole mount in
situ hybridization analysis revealed that
the strong signal of ARL6 expression was
localized to the ventral layer of the node,
which is distinguished by the presence of
a single, motile, central cilium, showing
good agreement with the observation that
ARL6 is expressed specifically in ciliated
cells and mediate intraflagellar transport
in C. elegans. However, the mutations of
ARL6 found in BBS3 did not seem to
affect the body axis formation and left-

Fig. 1. Alignment of deduced amino acid sequence of ARL6. (A) Amino acid alignment of conserved
domains (I, II and III) supposedly involved in guanine nucleotide binding and hydrolysis in the mouse
ARL family. Substituted amino acid residues are indicated by boldface. (B) Alignment of the deduced
amino acid sequences of mouse, human and Xenopus ARL6. Conserved domains (I, II and III) are
boxed. Arrowheads indicated mutated amino acid residues found in BBS3 patients. Accession
numbers: AB232697 (mouse), Q9H0F7 (human) and AB232698 (Xenopus).

169 and leucine 170 (Fig. 1B), have been found in families
affected with BBS3, indicating the importance of these residues
for its normal functions.

We performed whole mount in situ hybridization to character-
ize the expression pattern of ARL6 during early mouse embryo-
genesis. Whereas no obvious expression of ARL6 was detected
at early to mid-streak stage (Fig. 2A), at the late streak stage,
when the primitive streak reached to its distal end, we observed
localized ARL6 expression at the node, which is located at the
anterior tip of the primitive streak and functionally corresponds to
the gastrula organizer (Fig. 2B). This localized expression was
still observed at early bud stage and weak signal was also
detected throughout the embryonic portion (Fig. 2C). At this
stage, the node consists of two germ layers: a dorsal layer that is
continuous with the epiblast or ectoderm and a ventral layer that
is continuous with the endoderm. Sagittal sectioning of this
embryo revealed that the strong signal was localized to the ventral
layer of the organizer and the weak signal was observed through-
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domain I

ARL1 24 GLDGAGKT 31
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ARL4 27 GLDCAGKT 34
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right patterning, which are deeply related to the organizer activity
and the function of nodal cilia, respectively (Essner, 2002; Nonaka,
2002; Watanabe, 2003). Therefore, it would be worthwhile to
investigate the function of ARL6 in the ciliary transport in relation
to the nodal cilia and left-right asymmetry and also to tissue
differentiation of the CNS and somites by generating ARL6
knockout mice.

Experimental Procedures

Mouse ARL6 cDNA was amplified with RNA from 11.5 dpc
embryos by RT-PCR using primers, 5’-cctttggattggcgtcaaagatcag-
3’ and 5’-cactgaggtctccagggactatctc-3’ and cloned into pBlue-
script KS(+) plasmid. Thirty cycles of PCR were carried out at
94ºC for 30 sec, 55ºC for 1 min and 72ºC for 1 min. Xenopus ARL6
cDNA was also amplified from a cDNA library (stage 17/18) by
PCR using primers 5’-cgggatccaccatgggattgtttgacaag-3’ and 5’-
ccgctcgagttactgcagggtgtcttcatc -3’ and cloned into pCS107 plas-
mid (a gift from R Harland). Inserts were sequenced on both
strands. Mouse embryos were collected from ICR (CLEA, Japan).
Noon of the day on which a vaginal plug was observed was
considered 0.5 dpc. Staging of mouse embryos were performed
by their morphology (Downs, 1993). Embryos were fixed over-
night at 4ºC in 4 % paraformaldehyde, dehydrated through a
graded ethanol series then stored at -20ºC until use. Whole mount
in situ hybridization was performed as described (Wilkinson,
1992). The full-length ARL6 cDNA (KS+ARL6) was used to
generate digoxygenin-labeled sense or antisense riboprobe by
transcribing using T7 or T3 RNA polymerase, respectively and
digoxygenin-labeling RNA mix (Roche) according to the

manufacturer’s protocol. All probes were run on a 2% agarose/
formaldehyde gel before use to verify yield and length. After whole
mount staining, some late streak stage embryos were subse-
quently embedded in paraffin and sectioned at 7 µm to further
characterize the expression pattern. Images were captured with
a digital camera and imported into Adobe Photoshop for assembly
of the final figures.
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