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ABSTRACT  Notch is a receptor consisting of a single path transmembrane protein which is

essential for stem cell regulation in both vertebrates and invertebrates. We have investigated the

function of Notch signaling and found that ligands of the Notch receptor (Delta and Serrate)

sometimes act as receptor modulators in a cell autonomous manner; the balance of their activity

as ligands explains satisfactorily ‘lateral inhibition’ as well as ‘lateral specification’. This model

explains not only fly morphogenesis, but also the general regulation of stem cells. In vertebrates,

members of a novel family of genes which encode small secretory proteins, CCN, were demon-

strated to bind to Notch and stimulate signaling. This is not a ligand type binding, but rather a

modifier of the protein structure of Notch, so as to form a macromolecular complex. This

association may open up novel perspectives on Notch signaling, for instance in the movement of

cells involved in somite segmentation or angiogenesis. Thus, a well-conserved signal such as

Notch seems to have changed in function during the evolution of vertebrates.
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I was in the «Institut d’Embryologie Cellulaire et Moléculaire» at
Nogent-sur-Marne from October 1991 to March 1995. I had finished
my PhD course of molecular biology just before coming to the
institute and it was a completely new start for me to study
embryogenesis. Without the basic knowledge of developmental
biology, it was not easy to dig in the mine of institute and my life as
post-doc in France was principally spent on the absorption of ideas
fostered there. Professor Le Douarin is the dynamic center of ideas
and the people in and out the institute assembled together to form
some invisible web of intelligence. With the experience and
observations, I have gradually raised my own idea and could
extend a new field of research, Notch signaling, when I came back
to Japan.

 Molecular biology of eukaryote stands on the ideas principally
established by the system of cell culture and simple concept is
generally preferred. But in vivo  study of embryo apparently
indicates the complexity of morphological pattern formation and
has not attracted molecular biologists for long time. The genetics
of Drosophila and the studies of gene targeting of mice have
opened up a new way of thinking for embryogenesis and the recent
progress of developmental biology is remarkable. But still we are
not so sure how the temporal and spatial patterning is orchestrated
at molecular basis. Now the «Human genome project» was
accomplished and all basic elements of genome are in our hands.
However, life is not a simple puzzle or computer game, because the
species is not fixed at a certain state, but rather, it gradually evolves
to new one. The rules and combinations alter continually during

evolution. We should not consider that the genes are stable
elements.

 Initially, Notch was discovered as a neurogenic gene during the
study of Drosophila development (Dietrich and Campos-Ortega,
1984). At early 90’s, it was demonstrated that Notch signal is well
conserved in higher organisms including vertebrate and that it
controls the proliferation and differentiation of stem cells
(Weinmaster et al., 1991) (Chitnis et al., 1995) (de la Pompa et al.,
1997). And more, in vertebrate, Notch signal has some different
functions such as body segmentation (Conlon et al., 1995) (Hrabe
de Angelis et al., 1997). Since the establishment of molecular
cloning, a lot of genes have been identified and most of them are
presumed to have more or less the same functions in both
vertebrates and invertebrates. But Notch signal is a case that is
differently used in development between vertebrate and
invertebrate. Now it is necessary to elucidate the vertebrate
specific evolution of gene employment.

Notch ligands not only signal to receptors, but also
modulate receptor signalling

In Drosophila, a well-known model is demonstrated as «lateral
inhibition» to explain the differentiation of neuroblasts (Figure 1A)
(Cabrera, 1990) (Muskavitch, 1994). Neighboring cells in a proneural
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cluster show no apparent difference at the beginning, but by some
trigger, a cue is powered on to form the reciprocal patterning of two
different types of progenitor cells, neuroblasts and epidermoblasts.
In this process, cells differentiating to neuroblasts express Delta
and inhibit the differentiation of neighboring cells to neuroblasts.
Before the start of lateral inhibition, all cells in a proneural cluster
have ubiquitous but weak expression of both Delta and Notch and
desequilibration occurs spontaneously during the process of lateral
inhibition. This transformation was confirmed by the genetic ablation
in Drosophila, but the molecular basis of this spontaneous
segregation and enhancement was not clarified. Now this hypothesis
is extended to the concept of «lateral specification» that controls
the two different types of cell from one resource (Chitnis, 1995).

 Notch and its ligand, Delta are both single path transmembrane
proteins and are believed to regulate the intercellular actions of
lateral inhibition. But Notch ligands such as Delta and Serrate do
not seem to possess active domain(s) in the intracellular region
and it is difficult to explain how the interactive regulation occurs.
Some complicated hypothesis was demonstrated by the analyses
of genetic interaction in Drosophila. Positive and negative feedback
like Domino between Notch and Delta is an often-used model to
explain it (Heitzler and Simpson, 1993). But this model is not
supported by any molecular evidence and we would like to suggest
a simple concept to explain the lateral inhibition/specification.

 This idea was raised from the observations of in ovo  transfection
(Sakamoto et al., 1998) of Delta dominant negative to the neural
stem cells (Sakamoto et al., 2002a). «Dominant negative» is

usually employed for a defective molecule that counterparts the
intact one so as to inhibit the formation of normal complex, which
is biologically inactive. But in the case of Delta dominant negative,
it exerts its effect as an inhibitor on its receptor, the Notch protein
rather than on Delta itself. We investigated several differentiation
markers and concluded that the effect of Delta dominant negative
occurred in a cell autonomous manner, which is very strange
because ligand generally acts in a cell non-autonomous
(intercellular) manner.

 Genetic interaction in Drosophila indicated the homomeric
oligomerization must occur in both Notch and its ligands, Delta and
Serrate. We have confirmed it by biochemical assays (Figure 1B).
This type of oligomerization was reported in immunoreceptor
complex such as TNF-α family genes and their receptors. We
investigated the cell autonomous action of Delta dominant negative
by the aspect of oligomerization. Extended experiments with some
other deleted forms of ligands indicated that Notch ligands (both
Delta and Serrate) associate with their receptor, Notch, in the same
cell. In other words, the ligand sometimes acts as a receptor
modulator (Figure 2). Strikingly, this heteromeric combination
controls the cellular locality of Notch protein (Figure 2). Homomeric
complex of Notch protein exhibits on the cell surface meanwhile
heteromeric complex retains in some intracellular region, probably
the endoplasmic reticulum (ER) or Golgi apparatus. In summary,
expression of Notch ligand stimulates Notch signaling in neighboring
cells, but suppresses Notch receptivity in a cell autonomous
manner. We concluded that the «dominant negative» effect of
truncated Delta comes from the enhanced effect of cell autonomous
function and the loss of function as ligand. This model explains well
the catastrophic progression of lateral inhibition/specification (Figure
3). Once dose imbalance occurs between Notch and Delta, Notch

processing ol igomer ization and cluster ing

ol igomer ization and cluster ing

active signaling complex

Delta and Serrate

Notch

lateral inhibit ion

epidermoblast/neuroblast differentiationproneural cluster

Fig. 1. Lateral inhibition and the Notch molecular complex. (A)

Lateral inhibition in the development of fly neuroblasts. (B) Protein
structure of Notch and its ligands. Homomeric oligomerization occurs
before the formation of an active signaling complex.
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Fig. 2. Differential localization of

Notch protein complexes. The
homomeric complex emerges from the
cell surface, but the Notch/Delta(Serrate)
heteromeric complex remains in the
intracellular domain.
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expressing cells express Notch more strongly and
Delta expressing cells express Delta more strongly.
This progression is supported by both cell non-
autonomous (intercellular) activation of Notch signaling
and cell autonomous repression of Notch presentation
by Delta. Notch ligands are transmembrane proteins
and these membrane-anchored forms are necessary
for the proper action as ligand and receptor modulator.
This fact indicates that some unknown adaptor-like
protein associates with the intracellular domain of
Notch ligands. Several different types of transmembrane
or membrane associated ligands exist such as TNF-α
and scf (a ligand of c-kit) and their truncated soluble
forms loose  biological activity as ligands (Decoster et
al., 1995, Wehrle-Haller and Weston, 1995). These
ligands regulate stem cells and it might be possible to
assume that membrane anchored ligand/receptor
signaling is important for their maintenance.

 Fringe, a glycosyltransferease of Notch protein,
modulates Notch signaling in cell autonomous and cell
non-autonomous manner (Moloney et al., 2000). We
investigated its effect in Notch complex formation and
found that Fringe glycosylation inhibits the formation of
heteromeric complex between Notch and its ligand.
This effect probably forces to present the homomeric
complex of Notch to the cell surface and enhances its
receptivity (Figure 4). These results tell us the reason
why the fringe glycosylation enhances the Notch
signaling cell-autonomously.

 Notch and its ligand have a unique character in
association and lateral inhibition/specification seems
to be controlled on this basis. One thing that is not fully
understood is the initial step. Like the chain reaction of
atomic division, the destabilization of balance would
occur by some trigger, but this would be due to some
other factor(s) than Notch signaling.

Novel CCN molecules which regulate Notch
signaling were created during vertebrate
evolution

Nov  (Nephroblastoma overexpressed gene, CCN3 ) (Perbal,
1994), which were identified in several different research projects.
The twisted gastrulation  (tsg ) invertebrate gene (Mason et al.,
1994) has an equivalent gene family in vertebrates (mammalian
tsg ) (Graf et al., 2001). Recently we investigated the expression of
CCN3 during early embryogenesis(Katsube et al., 2001). It
expressed strongly in paraxial and axial structures such as
presomitic mesoderm, which resembles Notch1 expression pattern
and co-immunoprecipitation assay demonstrated that Notch1 could
associate with CCN3 in the extracellular domain(Sakamoto et al.,
2002b). In CCN3, the CT region is responsible for binding ability,
but Notch1 has several different sites in epidermal growth factor
(EGF)motif repeats that are recognized by CCN3 (Figure 5B).
These results indicate that CCN3 is not a ligand of Notch1 but a
type of accessory molecule that modifies the Notch1 protein
structure. It might be possible to change the oligomerization activity
of Notch1 by its dimerization. Binding of CCN3 could activate the
downstream of Notch signal such as HES1 or HES5 by itself. The

Notch receptor is originally produced as a single path
transmembrane protein, but it receives at least three processings.
The cleavages are created by different proteases; Furin (Roebroek
et al., 1993), Kuzbanian (TACE) (Yavari et al., 1998) and Presenilin
(Boulianne et al., 1997). These modifications and Fringe
glycosylation are well conserved in the evolution of vertebrates and
invertebrates.

 CCN is a newly identified family of genes (Perbal, 2001)
(Brigstock et al., 2003)and is believed to evolve only in vertebrates,
which was indicated by the analyses of human and mouse genome
project (personal communication). CCN is a type of small secretory
protein that has four principal domains, IGFBP (homologous to N-
terminal region of insulin-like growth factor (IGF) binding protein,
but not a binding domain to IGF), VWC (von Willebrand factor type
C), TSP1 (thrombospondin type I) and CT (C-terminal region rich
in cysteines) (Figure 5A). Main members of CCN are Cyr61
(Cysteine rich protein, CCN1 ) (O’Brien et al., 1990), CTGF
(Connective tissue growth factor, CCN2 ) (Bradham et al., 1991)and

Fig. 3. Molecular mechanism of lateral inhibition/specification. (A) Enhanced
expression of Delta suppresses the presentation of Notch to the cell surface. (B) Notch
receptor of a neighboring cell to the Delta + cell is stimulated. Reciprocal enhancement
of Notch and Delta is activated. (C) Reciprocal pattern of Notch and Delta expression is
enhanced in proneural cluster. (D) Each cell chooses the bimodal fate of differentiation
of Notch and Delta during lateral inhibition.
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signal activation could promote the antagonistic effect on cell
differentiation of a myogenic cell line, C2/4 (a subline of C2C12).
This is the first demonstration that a protein other than authentic
Notch ligands can regulate the Notch signal. This may indicate
another aspect of Notch protein, namely, that its signal activation
depends on its oligomerization, which differs much from other
types of signaling of membranous receptor. At present, the
counterparts of CCN molecules belong to several different types of
proteins such as Fibuin1(Perbal et al., 1999), integrin(Chen et al.,
2000), BMP(Abreu et al., 2002), VEGF(Inoki et al., 2002) and also
other members of CCN to form the mutual heteromeric
dimers(Perbal et al., 1999). Some other unknown molecules will
bind to the CCN molecule and influence its activity.

Notch receptor in vertebrate is surrounded by other types of
extracellular and transmembrane proteins via CCN bridges. Of
course, this is the aspect viewed from the Notch protein. It seems
correct to say that the macrocomplex of extracellular proteins is
formed by a glue-like protein, CCNs and that Notch is involved in
it. The members of this complex would be changed depending on
the types of cells and CCN seems to contribute as a scaffold
protein to constitute a dynamic extracellular protein complex.

Somite segmentation and Notch signal

 Recent reports often mention that the master plan of body
patterning seems common to vertebrates and invertebrates.
Anterio-posterior gradient of Hox gene family is a well-known
example (Fienberg et al., 1987) and it has become a fashion to
discuss developmental mechanisms in a similar manner. But as
we see in case of Wnt (Gavin et al., 1990) or Hedgehog (Fietz et
al., 1994), the vertebrate equivalents of these segment polarity
genes are not involved in anterio-posterior patterning of body
segment but in dorso-ventral polarity of body axis.

 As for Notch signaling, it is certainly involved in the regulation
of stem cells in both organisms (Chan and Jan, 1999), but in
vertebrates, Notch signal is also used for body patterning, such as
somite segmentation (Conlon et al., 1995; Hrabe de Angelis et al.,
1997; Johnston et al., 1997). Somitogenesis can be classified

Fng glycosilation Repulsion

homomer ic oligomer ization

Delta/Notch

Notch/NotchFig. 4. The glycosylation by Fringe

dissociates the heteromeric complex of

Notch/Delta (also Notch/Serrate) and

homomeric complex of Notch occurs. This
explains the cell-autonomous enhancement
of Notch signaling by Fringe.

according to two independent aspects; the growth and
differentiation of somitic stem cells and the segmentation of
somite structure (Palmeirim et al., 1998). Notch signal regulates
the stem cells in somite and also plays a critical role in the
segmentation. Body segmentation is also observed in
invertebrates, but invertebrates apply completely different sets of
genes, named as Gap  and pair rule (Nusslein-Volhard and
Wieschaus, 1980). Phenotypically, vertebrates and invertebrates
possess the same pattern formation, but their difference in
molecular mechanism is discrete. Essentially, molecular functions
and interactions of gene product have not been altered during
evolution, so what is the cause of change of use?

One possible hypothesis is the creation of new genes, which
add a novel modification or path to the existing set of genes. As
mentioned in the previous paragraph, Notch protein is surrounded
by other molecules in vertebrates. Integrin is a large family of
transmembrane receptors constituted with heteromeric complex of
α and β subunits. It has different ligands such as laminin, collagen
and fibronectin and controls the cell motility or migration. Several
integrins were reported to be involved in somite segmentation and
especially the β 1 subunit seems important (Drake et al., 1992;

IGFBP VWC TSP1 CT

CCN family of Genes

CCN3

Notch

Delta

Fig. 5. The association of CCN protein modulates the Notch signal.

(A) Basic structure of the CCN family of genes. IGFBP (homologous to N-
terminal region of insulin-like growth factor [IGF] binding protein, but not
a binding domain to IGF), VWC (von Willebrand factor type C), TSP1
(thrombospondin type I) and CT (C-terminal region rich in cysteines). (B)

CCN3 can associate Notch1 in EGF motifs and stimulates Notch signaling.
Effect of trimeric complex of Notch/Delta/CCN3 is not yet determined.
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Drake and Little, 1991). Direct evidence is not yet demonstrated
because null mutants of β 1 integrin died in the implantation stage
(Stephens et al., 1995). This integrin was recently reported to
associate with CCN1, which influences the remodeling pattern of
endothelial cells during angiogenesis (Chen et al., 2000). α6 β1
integrin was reported to be expressed in somitogenesis (Pow and
Hendrickx, 1995). The adhesion ability of the integrin family changes
rapidly with «inside-out» and «outside-in» effects by cytokines
(Ginsberg et al., 1992; Takagi et al., 2002) and it may be possible
to think that integrin regulates the movement of somitic cells so as
to form the somite segment cooperating with Notch signaling
(Figure 6) via CCN. In the remodeling step of angiogenesis, direct
interaction of Notch4 and β 1integrin is important (Leong et al.,
2002). β 1 integrin was also reported to interact with CCN1 and to
regulate the angiogenesis (Grzeszkiewicz et al., 2002). CCN is a
candidate molecule that induces the cell migration activity of Notch
signal in somite segmentation, but at present single knockouts of
CCN1 (Mo et al., 2002) and CCN2 (Ivkovic et al., 2003) demonstrated
the perturbation of angiogenesis but not of somite segmentation.

integr in Notch

CCN

?

fibronectin

sugar chain by Fng

Delta

somite segmentation

Fig. 6. Hypothetical network of proteins in the area of somite

segmentation. Integrin may be related with Notch1 via bridge of CCN
and this interaction may cause remodeling of somitic structure.

Genetic redundancy may exist in the area of somitogenesis since
overlapping expression among CCNs was observed there. Clock-
wise change of gene expression of some Notch signal genes such
as lunatic Fringe  (McGrew et al., 1998), hairy1 (Palmeirim et al.,
1997) and hairy2 (Davis et al., 2001) is essential for the timing
(oscillation) of somite segmentation, but the CCN relationship with
these clock genes remains to be elucidated. Further investigation
is necessary to elucidate the role of CCN in somitogenesis.

In vertebrates, the role of Notch signaling is not limited to the
developmental stage. Notch1 contributes to tumorigenesis such as
leukemia (human and mice) or uterine cervical cancer. Regulator
cell cycle genes(p21, E6/E7) were reported to be involved in this
process (Sriuranpong et al., 2001; Talora et al., 2002), but these
types of association were not confirmed in invertebrates. With the
evolution of vertebrates, some components of the genetic web of
Notch signaling seemed to be transformed for the convenience of
life. At the time of discovery, it was very surprising that invertebrates
and vertebrates conserve homologous genes, but now the time
has come to think about the difference in their usage.

We started the study of Notch signaling by in ovo  experiments
and at present, we are interested in its molecular interactions. Le
coeur est à gauche. Le capital est à droite. (The heart is to the left.
Money is to the right.) is believed to indicate the mentality of the
French people regarding politics. If I apply this expression to
explain my situation, I can say «Motif is in the molecule. Motive is
still in morphology.»
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