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ABSTRACT Chemokine production by cancer cells constitutes a duality. Leukocyte recruitment

under the pressure of chemokines may be beneficial for the host or for the tumor. Here, the emphasis

will be on the detrimental effects of chemokines in tumor biology. A decade ago, the countercurrent

principle of tumor-derived chemokine and peritumoral protease production was formulated to

explain chemokine expression as a selective advantage for specific tumors and as a phenotype of

invasive and metastasizing cancer cells. Chemoattracted leukocytes may provide trophic factors

and produce invasion and metastasis-promoting proteinases. On the basis of the consensus

sequence glutamic acid-leucine-arginine (ELR) preceding the canonical cysteine-any amino acid-

cysteine (CXC), ELR-positive CXC chemokines, such as interleukin-8 and granulocyte chemotactic

protein-2, are angiogenic and thus instruct the host to feed the tumor and bring the vessels into

closer contact with the tumor cells. These mechanisms may enhance lymphogenic and hematogenic

metastasis. Recent research and proofs of this countercurrent concept are here reviewed and

compared. In addition, we discuss how alterations in chemokine ligand and receptor expression

profiles may contribute to tumor growth, invasion, metastasis and immune evasion. These

comparisons imply practical consequences for future cancer diagnosis and therapy. The implica-

tions include methods to diminish metastasis by inhibiting angiogenic CXC chemokine ligands and

receptors, therapeutic combinations of chemokine overexpression with antigenic stimuli and co-

treatment with angiostatic chemokines and tumor antigens.
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Introduction

The understanding of the underlying biochemical events is
gradually growing in the case of several classical observations in
tumor biology. This statement certainly is applicable for the
observations of paraneoplastic effects, tumor-associated mac-
rophages and the countercurrent model of invasion and metasta-
sis. It is well established that many tumors, in comparison with
normal cells, overproduce specific proteins by coincidence. At the
molecular level, this phenomenon is explained by accumulation of
(random) genetic changes that deregulate gene promoter activi-
ties and lead to overproduction of specific mRNAs and proteins.
If such proteins possess pharmacological activities, the clinical
cancer phenotype is extended by paraneoplastic effects. The
production of peptide hormones by oat cell tumors of the lungs
forms a classical example of this situation. Chemokine expression
may also lead to paraneoplastic effects. Dissiminated pustulosis
by tumoral expression of interleukin-8 forms an example
(Poszepczynska et al., 2001). Expression of macrophage inflam-

matory protein-1α (MIP-1α/CCL3) by myeloma cells can have
bone destruction as a pharmacological effect, which may be
mediated by activation of osteoclasts (Choi et al., 2001).

At the microscopic level, the infiltration of leukocytes into
tumors is also a classical observation. Although the underlying
mechanism may be random and as such the phenomenon may be
classified as paraneoplastic, in specific settings, selection of
tumor cell clones during cancer progression may occur. Clones
with such selective advantage may persist longer in the host. For
instance, a tumor cell clone which produces an autocrine growth
factor may become independent from serum platelet-derived
growth factor. Similarly, clones that produce net proteolytic activ-
ity with the capacity to degrade extracellular matrix components
may leave efficiently the primary tumor site and invade the
surrounding tissues or cross the basement membrane of endot-
helia and metastasize to distant organs. Invasion and metastasis
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of such clones will more readily occur than of clones which
overproduce net inhibitory activity against proteases. Cancer cell
phenotypes, such as uncontrolled growth and invasive behavior
have been extensively reviewed (Coussens and Werb, 2002;
Mareel and Leroy, 2003).

Tumor-associated leukocytes were originally conceived as a
beneficial host response to tumors. This is certainly the case for
immunogenic tumors or when additional immune signaling or
insults occur. For instance, a tumor may become necrotic or
infected. Furthermore, many cancer treatments, in particular
chemotherapy, radiotherapy and immunotherapies induce necro-
sis and inflammatory signals. In other words, many circum-
stances exist in which chemokines may be induced in the tumor
surroundings and this may account for tumor-associated leuko-
cytes and, indeed, these recruited cells may be detrimental for the
tumor and beneficial for the host. A number of experimental
conceptual proofs will be given from recent literature (vide infra).
In addition, we will review here the current knowledge on another
key question. What happens or what is the effect of autonomous
chemokine expression by the tumor when no immunological
danger signaling occurs? Obviously, leukocytes will be recruited
to the tumor and maybe the tumor will strangle itself by the
workings of the immune system. In principle, if it were so simple,
by such negative selection one would not observe so often tumor-
associated leukocytes in diagnostic tumor biopsies. While we
were studying chemokine production by cancer cells, we ob-
served that most invasive cancers produced the broadest spec-
trum and the highest levels of chemokines. For instance, we
purified from the human osteosarcoma cell line MG-63 (Fig. 1) the
angiogenic and granulocyte chemotactic proteins interleukin-8
(IL-8/CXCL8)(Van Damme et al., 1988), GROα/CXCL1, granulo-
cyte chemotactic protein-2 (GCP-2/CXCL6) (Proost et al., 1993),
the angiostatic CXC chemokine IP-10/CXCL10 (Proost et al.,
1993) and monocyte chemotactic protein -1 (MCP-1/CCL2), MCP-
2/CCL8 and MCP-3/CCL7 (Van Damme et al., 1992).

The early observations that cancer cells produce chemokines,
the countercurrent principle of invasion (Opdenakker and Van
Damme, 1992), the gene structures and biological functions of
chemokines and the consequences for cancer biology were

reviewed in 1999 (Opdenakker and Van Damme, 1999) and this
theme was discussed in other review articles (Balkwill and
Mantovani, 2001; Mareel and Leroy, 2003). Also, the role of
proteinases from leukocytes in the invasive process was high-
lighted in the original countercurrent concept and has meanwhile
been documented in vivo (Coussens et al., 2000; Van Coillie et al.,
2001). The roles played by gelatinase B/matrix metalloproteinase-
9 in pathology were extensively addressed in a recent extensive
review (Van den Steen et al., 2002). We originally coined the
name “countercurrent model” for the involvement of chemokines
in cancer, because the fluxes of tumor and host cells are opposite:
chemoattracted leukocytes and growing vessels (angiogenesis)
are towards the tumor, while the invasion of cancer cells is away
from the primary tumor site and is facilitated by chemokine-
induced proteolysis. By now, almost every type of tumor has been
shown to produce chemokines or to be responsive to one or
another chemokine. A literature search in the PubMed data library
(www.ncbi.nlm.nih.gov) lists about 2000 entries on “chemokines
and cancer” and the majority of manuscripts deals with the
expression of chemokine ligands or receptors (Tables 1 and 2) in
various types of tumors. This observation not only directly ex-
plains the so frequent occurrence of tumor-associated leuko-
cytes, but it also suggests that this phenomenon is more than just
random coincidence. Therefore, we will focus below on the
functional aspects how chemokines may assist tumors and what
may be the practical consequences of the countercurrent prin-
ciple for the oncologist.

How may chemokines help tumors?

Chemokines may be direct autocrine growth factors for
cancer cells

Particular chemokines have been found to stimulate in an
autocrine way the growth of cancer cells. This implies that the
tumor cells carry chemokine receptors that transduce a mitogenic
signal. In this way IL-8 has been found to be mitogenic for Kaposi
sarcoma cells (Masood et al., 2001), ovarian cancer (Xu and Fidler,
2000), colon carcinoma (Brew et al., 2000) and malignant me-
sothelioma (Galffy et al., 1999). Alternatively, the chemokine Gro-
α/CXCL1 was originally discovered as a growth factor for mela-
noma cells (Richmond et al., 1988; Haghnegahdar et al., 2000).

Fig. 1. Invasive tumor cells produce simultaneously various

chemokines. Around 1970, invasive primary tumors were systematically
cultured to establish new tumor cell lines at the Rega Institute for Medical
Research. The corresponding cell lines were named “MG” because
“menselijk gezwel” means human tumor. One of these, MG-63 (Billiau et
al., 1977) is pictured here and has been widely used for cytokine (fibroblast
interferon, interleukin-6) and chemokine production. A number of
chemokines that were produced and characterized from MG-63 cells are
here classified into the CXC chemokines and the mononuclear cell
attractants of the CC family. In terms of angiogenesis a counterbalance
exists between the angiogenic and angiostatic CXC chemokines, whereas
the effect of CCLs is less documented. This historical example illustrates
that tumor cells may produce simultaneously a variety of chemokines and
that the biological effects in vivo depend on functional balances between
e.g. angiogenesis and angiostasis and of the numbers, types and activa-
tion pathways of the chemokine-recruited leukocytes. For chemokine
abbreviations see Tables 1 and 2. Photograph and montage by the
courtesies of Chris Dillen and Pierre Fiten.
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SDF-1/CXCL12 has been found to stimulate glioblastoma cell
proliferation (Barbero et al., 2003). I-309/CCL1 possesses anti-
apoptotic effects and thus sustains the growth of T cell lymphomas
(Van Snick et al., 1996) and adult T cell leukemia cells (Ruckles et
al., 2001). Finally, IL-8/CXCL8 has been found to inhibit TNF-
related apoptosis in ovarium carcinoma (Abdollahi et al., 2003).

Chemokines provide paracrine growth advantages via an-
giogenesis

Angiogenesis has been well studied in the biology of organ
development, tissue repair and cancer growth and invasion.
Vessel growth, relevant for cancer, varies widely (e.g blood and
lymph vessels) and is governed by many factors that stimulate
(e.g. angiogenesis by vascular endothelial growth factors) or
dampen (e.g. angiostatin) proliferation of the various types of
endothelial cells (Folkman, 1995). Chemokines belong to these
factors and their introduction in the angiogenesis field coincided
with the early studies of platelet factor-4/CXCL4, a heparin
binding molecule with the CXC signature that possesses strong
anti-angiogenetic activity (Maione et al., 1990). Shortly thereafter,
IL-8/CXCL8 was discovered as an angiogenic chemokine (Koch
et al., 1992; Strieter et al., 1992). The critical difference between
the angiogenic and angiostatic CXC chemokines is dependent on
a tripeptide ELR motif in front of the CXC (Strieter et al., 1995).
According to this rule, the CXC chemokines (without ELR), such
as PF-4/CXCL4 (Maione et al., 1990), IP-10/CXCL10 (Arenberg
et al., 1996) and Mig/CXCL9 are angiostatic, whereas the ELR+CXC
chemokines are angiogenic. Prototypes for the latter subgroup

are IL-8/CXCL8 in humans and GCP-2 in the mouse (Strieter et
al., 1995b; Belperio et al., 2000). Although it is known that
angiostatic chemokines bind to CXCR3 (Proost et al., 2001;
Romagnani et al., 2001), it remains not fully understood how
these inhibit the angiogenic activity of ELR+ CXC chemokines.

Chemokines enhance invasion
Invasion defined as the process of cell movement through

basement membrane barriers and the dense network of extracel-
lular matrix molecules is in fact a physiological function that
leukocytes constantly execute in inflammation. The direction of
leukocyte migration is towards increasing chemokine concentra-
tions. Some molecular mechanisms to perform chemotaxis func-
tions rely on the production and function of cytoskeletal motor
proteins, secreted proteinases and glycanases and the expression
of adhesion molecules, including mucins, selectins, integrins and
immunoglobulin family receptors. Chemokines, while attracting
leukocytes, often activate the production of such enzymes and cell
surface markers. Whereas chemokine actions have been mainly
studied in immune responses, these activities have also been
observed in specific tumor models. For instance, prostate tumor
cells, responding to IL-8/CXCL8 through CXCR2 are more inva-
sive in vitro (Reiland et al., 1999) and chemokines induce migra-
tional responses (chemotaxis and cytoskeletal changes) in various
human breast carcinoma cell lines (Youngs et al., 1997). In vivo,
the invasive phenotype may be assisted by tumor-derived
chemokines. Indeed, expression of IL -8/CXCL8 mRNA in ovarium
carcinoma is correlated with histological grading (Davidson et al.,
2002). Chemoattracted leukocytes may enhance the local protein-
ase load and thus assist in the invasive process. Thus,
overexpression of mouse granulocyte chemotactic protein-2 (which
is one of the most potent neutrophil attractants in the mouse) in
human melanoma cells, assisted tumor growth by angiogenesis
and induced in vivo  gelatinase B/MMP-9 as a matrix enzyme (Van
Coillie et al., 2001). In many models, xenografting with chemokine-
expressing cancer cells has been used to show chemokine action
(i.e. tumor infiltration of leukocytes and proteinase induction)
(Melani et al., 1995; see also Tables 3 and 4). It needs to be noticed
that in most of these settings a strong immune response is elicited
and thus the tumor may eventually grow, but often is rejected by the
workings of the hosts immune response (vide infra).

TABLE 2

HUMAN CXC CHEMOKINES:
CHROMOSOMAL LOCATION AND RECEPTOR RECOGNITION

Systemic Name Synonym Chromosome Receptor(s)

CXCL1 GROα/MGSA-α 4q12-q13 CXCR2
CXCL2 GROβ/MGSA-β 4q12-q13 CXCR2
CXCL3 GROγ/MGSA-γ 4q12-q13 CXCR2
CXCL4 PF4 4q12-q13 CXCR3B
CXCL5 ENA-78 4q12-q13 CXCR2
CXCL6 GCP-2 4q12-q13 CXCR1, CXCR2
CXCL7 NAP-2 4q12-q13 CXCR2
CXCL8 IL-8 4q12-q13 CXCR1, CXCR2
CXCL9 Mig 4q21.21 CXCR3
CXCL10 IP-10 4q21.21 CXCR3
CXCL11 I-TAC 4q21.21 CXCR3
CXCL12 SDF-1α/β 10q11.1 CXCR4
CXCL13 BLC/BCA-1 4q21 CXCR5
CXCL14 BRAK/bolekine Unknown Unknown

TABLE 1

HUMAN CC CHEMOKINES:
CHROMOSOMAL LOCALIZATION AND RECEPTOR USAGE

Systemic Synonym a Chromosome Receptor(s)b

Name

CCL1 I-309 17q11.2 CCR8
CCL2 MCP-1/MCAF 17q11.2 CCR2
CCL3 MIP-1α/LD78α 17q11.2 CCR1,CCR5
CCL3L1 MIP-1α/DL78β 17q11.2 CCR1, CCR3, CCR5
CCL4 MIP-1β 17q11.2 CCR1, CCR2, CCR5
CCL5 RANTES 17q11.2 CCR1, CCR3, CCR5
CCL7 MCP-3 17q11.2 CCR1, CCR2, CCR3, CCR5

CCL8 MCP-2 17q11.2 CCR1, CCR2, CCR3, CCR5

CCL11 Eotaxin 17q11.2 CCR2, CCR3
CCL13 MCP-4 17q11.2 CCR1, CCR2, CCR3
CCL14 HCC-1 17q11.2 CCR1, CCR3, CCR5
CCL15 HCC-2/Lkn-1/MIP-1δ 17q11.2 CCR1, CCR3
CCL16 HCC-4/LEC 17q11.2 CCR1
CCL17 TARC 16q13 CCR4
CCL18 DC-CK1/PARC/AMAC-1 17q11.2 Unknown
CCL19 MIP-3β/ELC/exodus-3 9p13 CCR7
CCL20 MIP-3α/LARC/exodus-1 2q33-q37 CCR6
CCL21 6Ckine/SLC/exodus-2 9p13 CCR7
CCL22 MDC/STCP-1 16q13 CCR4
CCL23 MPIF-1/MIP-3 17q11.2 CCR1
CCL24 MPIF-2/eotaxin-2 7q11.23 CCR3
CCL25 TECK 19p13.2 CCR9
CCL26 Eotaxin-3 7q11.23 CCR3, CCR10
CCL27 CTACK/Eskine 9p13 CCR10
CCL28 MEC CCR10
a The CCL nomenclature is restricted for human ligands.
b receptor binding by intact or posttranslationally modified chemokine
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Chemokines enhance metastasis by vessel entry
After local growth and crossing tissue barriers, the tumor cells may

enter blood or lymph vessels. This forms the first phase of tumor cell
entry during the process of metastasis. In many ex vivo  studies, the
expression of chemokines has been associated with higher clinical
tumor staging (Table 3). Along this line, studies are available on IL-
8/CXCL8 in cutaneous melanoma (Nurnberg et al., 1999), malignant
melanoma (Singh et al., 1999), colorectal carcinoma (Haraguchi et
al., 2002), ovarian carcinoma (Davidson et al., 2002), non-Hodgkin
lymphoma (Retzlaff et al., 2002), breast cancinoma (Bendre et al.,
2002) and lung cancer (Chen et al., 2003). RANTES/CCL5 was
studied in non small cell lung cancer (Moran et al., 2002), whereas
MCP-1/CCL2 expression was correlated with glioblastoma (Huang
et al., 2002). Whether the process of vessel entry is determined by
enzyme induction, by the process of angiogenesis, by both or by still
other mechanisms must await further experimentation, e.g. by using
specific knockout models or by specifically blocking proteinases or
chemokines with monoclonal antibodies.

Chemokines determine the location of secondary tumors
Once tumor cells have entered the blood or lymph vessels they

circulate passively. Studies on the roles played by chemokines in
metastasis have been skewed more towards chemokine receptor
expression than to chemokine ligand production. One reason for
this may be the early finding that CXCR4-positive breast cancer
cells are responsive to SDF-1 (Muller et al., 2001). At the time of
this discovery, SDF-1 was well known for its homing effect on
immature (CD34-positive) progenitor cells in the process of bone
marrow repopulation (Aiutti et al., 1997). Meanwhile, VEGF was
shown to upregulate CXCR4 in breast carcinoma, possibly in
hypoxic zones, making these cells responsive to SDF-1 (Bachelder
et al., 2002). SDF-1 also enhances motility and adhesion of lung
cancer cells expressing CXCR4 (Kijima et al., 2002) and breast
cancer cells (Helbig et al., 2003). Furthermore, the outgrowth of
micrometastases in colon carcinoma cells was found to be en-
hanced by SDF-1 (Zeelenberg et al., 2003).

The expression of chemokine receptors, easily experimentally
accessible with the use of fluorescent-activated cell sorting-
(FACS)-analysis and immunohistopathology, may thus deter-
mine the type of tumor that metastasizes, whereas the site of
dissemination is dictated by expression of the chemokine ligand.
For this process to occur, not only chemokines but also adhesion

events need to take place. For instance, it has been found that
mouse B16 melanomas, transfected with CXCR4, become more
metastatic to the lungs (Murakami et al., 2002) via interaction with
endothelial beta1 integrins (Cardones et al., 2003). Another place
of SDF-1 expression is the lymph node. This may explain why
CXCR4-expressing tumors metastasize to lymph nodes (Kato et
al., 2003). SDF-1 expression in the eye has been invoked for
cancer spreading to this organ (Chan et al., 2003). Along a similar
line, LARC/CCL20 is constitutively expressed in the liver and this
ligand interacts with CCR6. The latter receptor is commonly
overexpressed in colon, thyroid and ovarian carcinoma. These
observations may explain the commonly observed metastases of
these tumors to the liver (Dellacassagrande et al., 2003). In the
future, it will become clearer whether chemokine ligand and
receptor expression determine the metastasis target organ. Such
studies can now be done by gene profiling of primary tumors and
metastases and by investigating organ specific chemokine ligand
and receptor expression profiles (Ohshima et al., 2003).

Chemokine expression may induce immune evasion for
specific cancers

Within the concept that chemo-attracted leukocytes may dam-
age the tumor by increasing the immunogenicity through the action
of antigen-presenting cells or by stimulating the adaptive immune
response through T-helper or cytotoxic T cells and NK cells, the
reduction of chemokine action may enhance immune evasion. This
may be caused by diminished chemokine ligand or receptor
production or activity. The chemotactic response may be de-
creased in specific tumor settings. For instance, in patients with
primary and metastatic melanoma, circulating monocytes have
been found to be less responsive to MCP-1/CCL2 in chemotactic
migration than those of controls. Possibly, this is due to deactiva-
tion or modulation of the MCP-1-receptor expression on these cells
(Muller et al., 1997). In another study on the etiology of cervical
carcinoma caused by human papilloma virus oncogenes E6 and
E7, it was observed that these oncogenes, individually or acting
together, suppressed the production of MCP-1/CCL2 in primary
epithelial cells from the female genital tract. Other chemokines,
such as IP-10/CXCL10, IL-8/CXCL8 and RANTES/CCL5, were
less affected. Furthermore, 4 of 6 cervical carcinoma cell lines that
scored positive for human papilloma virus transformation, did not
express MCP-1/CCL2. Suppression of MCP-1/CCL2 expression

 TABLE 3

CHEMOKINE EXPRESSION EX VIVO IN HUMANS

Chemokine Tumor Association Reference

RANTES/CCL5 Non small cell lung cancer predictor of survival in stage I NCCLC Moran et al., 2002

IL-8/CXCL8 T cell lymphoma association with disseminated pustulosis Poszepczynska et al., 2001

IL-8/CXCL8 Primary cutaneous melanoma correlation with worse prognosis Nurnberg et al., 1999

IL-8/CXCL8 Malignant melanoma correlation with metastatic phenotype Singh et al., 1999

IL-8/CXCL8 Colorectal carcinoma expression in tumor and serum correlates with liver metastasis, microvessel density Haraguchi et al., 2002

MCP-1/CCL2 Glioblastoma MCP-1 as autocrine growth factor Huang et al., 2002

IL-8/CXCL8 Ovarian carcinoma IL-8 mRNA expression in effusions associated with higher tumor grade Davidson et al., 2002

IL-8/CXCL8 Primary gastrointestinal non Hodgkin higher pretreatment IL-8 serum levels associated with higher stage Retzlaff et al., 2002
lymphoma

IL-8/CXCL8 Non small cell lung cancer higher vessel density, higher metastatic potential in vitro Chen et al., 2003

IL-8/CXCL8 Gastric carcinoma association with vascularity Kitadai et al., 1998

IL-8/CXCL8 Malignant melanoma association with aggressiveness Kunz et al., 1999
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seems to coincide with the program of E6/E7-induced transforma-
tion of primary epithelial cells (Kleine-Lowinski et al., 2003).

Therapeutic application of chemokines in cancer

Factors influencing the effect of intratumoral overexpression
of chemokines on antitumoral activity

Five years ago, it was already clear that the effect of chemokine
expression in a tumor was different for immunogenic tumors
versus nonimmunogenic tumors. In fact, we questioned whether
chemokines are tumor suppressors, since in all the available
examples of chemokine gene transfer that demonstrated tumor
suppression, secondary immunostimulating signals were pro-
vided, e.g. by activation with LPS or by using immunogenic
tumors (Opdenakker and Van Damme, 1999; Paul et al., 2002).
This statement has only been reinforced by more recent data
(Table 4). For instance, whereas IP-10/CXCL10 showed little
effect as antitumoral agent by adenoviral expression, in synergy
with IL-12, the effects were profound in a murine model of
colorectal adenocarcinoma (Narvaiza et al., 2000).

A number of influencing factors need to be stressed here. In
many experimental models strong immunogenic signals are pro-
vided along with the chemokine signals. In particular, the use of
xenografted tumor cells and of viral gene transfer vectors (that
confer expression of “non self” viral proteins) provide such signals
(Table 4). Immunogenic stimuli are absent in most human tumors.
This implies that the positive effects of chemokine gene transfec-
tion in experimental animal models (including immunogenic sig-
nals) may not necessarily be observed in humans.

In addition, the level of chemokine expression determines the
outcome. For example low levels of adenoviral expression of MCP-
1/CCL2 in xenogeneic tumors lead to tumor growth, whereas high
expression leads to massive infiltration and tumor rejection (Nesbit
et al., 2001). This gene-dose effect seems to be difficult to control in
human schemes for gene therapy. Also, the balance of tumoral
chemokine production and chemokine production by the surround-
ing tissue will determine whether a tumor cell (having the correspond-
ing chemokine receptor) will migrate to form secondary tumor sites
(Menten et al., 2002).

Therefore, at present one may better advocate to study first the
outcome of chemokine gene transfection in syngeneic tumor host
models and with nonimmunogenic transfer systems (e.g. by not
using viral vector systems). As an alternative, the effect of
chemokine function in experimental tumor models can be analysed
with the use of inhibitory monoclonal antibodies against chemokine
ligands or receptors or by other types of interference with
chemokine mRNA or protein. In the situation that the chemokine
action is blocked by immune evasion mechanisms (rather than
the chemokine expression is enhanced) in the tumor, also sec-
ondary immunogenic signals, dose effects and the contributions
of the surrounding tissues have to be taken into account. Informa-
tion in the recent literature is in agreement with this thesis and
provides a number of examples of this phenomenon (Table 5).
The observation that, in a number of examples, the strategies of
chemokine engineering or interference work in vivo, gives hope
that biotechnological development is possible. However, the fact
that so many different chemokines exist makes the choice more
difficult.

TABLE 4

ANTITUMORAL EFFECTS BY FORCED CHEMOKINE EXPRESSION IN TUMORS IN VIVO

Chemokine DNA Vector or antibody Tumor Effect on tumor Immune mediator/response Reference

Human MDC/CCL22 Adenovirus murine syngeneic tumors growth ↓ CD8+ cytolytic effectMHC I Lee et al., 2003

Mouse fractalkine pCDNA3.1/Myc-HisA tag murine syngeneic Lewis lung growth ↓ CD8+ cytolytic effect
CD4+ helper effect Guo et al., 2003

Mouse MCP-3 pCMV MCP-3 mouse colon rectal cancer cells growth ↓ increased tumoral leukocytes Hu et al., 2002
(CMT93) in C57Bl6 mice metastasis ↓

Human MCP-3/CCL7 parvovirus vector human cervical carcinoma in growth ↓ activated macrophages Wetsel et al., 2001
mouse xenograft and dendritic cells

Human MCP-1/CCL2 adenovirus human melanoma xenograft growth ↓  (high dose) massive monocyte infiltration Nesbit et al., 2001
at high dosis

Human MCP-1/CCL2 bovine papillomavirus human malignant glioma xenograft no effect massive numbers of monocytes Nagai et al., 2001
and natural killer cells

Mouse SLC PCXN2 fibrosarcoma or ovarian carcinoma growth ↓ T lymphocytes and Nomura et al., 2001
Mouse ELC pThioHisA (immunogenic) adjuvant effect of cytokines
Mouse SDF-1α

Human Mig/CXCL9 adenovirus human non small cell lung carcinoma growth ↓ angiogenesis ↓ Addison et al., 2000
metastasis ↓

IP-10 neutralizing antibody neuroblastoma syngeneic growth ↓ CD8+ induction and Pertl et al., 2001
vaccination effect

LEC/HCC-4/CCL16 vector transfection mouse adenocarcinoma growth ↓ CD8+ and neutrophils Giovarelli et al., 2000
syngeneic in Balb c mice

IP-10 in synergy with IL-12 adenovirus vector syngeneic CT26 mouse colorectal growth ↓ CD4+ cells increased Narvaiza et al., 2000
no effect of IP-10 alone adenoca rumonia CD8+ cells increased

Mouse CTACK adenovirus syngeneic mouse ovarium carcinoma growth ↓ CD4+and CD8+ NK cells Gao et al., 2003
CD3+ lymphocytes

Mouse SLC plasmid vector syngeneic colon carcinoma growth ↓ CD8+ cells Vicari et al., 2000
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Pharmacological interference on the basis of the countercur-
rent model

Several experimental procedures have been worked out and
illustrate that the knowledge of the countercurrent principle can be
successfully used for cancer therapy. Most of the chemokine
literature on invasion and metastasis promotion is about IL-8/
CXCL8 as an example, and some in vivo  successes were
obtained by inhibition of chemotaxis or angiogenesis mediated by
IL-8/CXCL8. Enprostil is a prostaglandin E2 analogue that blocks
IL-8/CXCL8 production (Toshina et al., 2000). Fujisawa and
colleagues produced a hexapeptide inhibitor of Gro-α/CXCL4
and IL-8/CXCL8, called antileukinate (Fujisawa et al., 1999 and
2000). Monoclonal antibodies against IL-8/CXCL8 and
antileukinate inhibited tumor cell growth and pulmonary metasta-
sis in vivo. Monoclonal antibody against IL-8/CXCL8 was also
efficient in inhibiting the progression of malignant pleural me-
sothelioma in nude mice (Galffy et al., 1999). Rebamipide, an anti-
ulcer agent, reduces the inflammatory potential of Helicobacter
pylori  by reducing IL-8/CXCL8 production by gastric cancer cells
(Masamune et al., 2001). The fusion of a chemokine with a tumor
antigen induced potent antitumoral response for IP-10/CXCL10
and MCP-3/CCL7, presumably by recruitment and activation of
antigen presenting cells, since T cell responses were detected
(Biragyn et al., 1999). The latter study constitutes another ex-
ample that chemokine plus a second signal (antigen) will provoke
an antitumoral response. Some antitumor agents induce anti-
angiogenic chemokines (e.g. IP-10/CXCL10) and may be useful
for inducing tumor necrosis (Cao et al., 2001). Another mecha-
nism by which chemokine-producing cancer cells may have an
advantage is by chemokine-receptor desensitization and reduced
chemotaxis (Kurt et al., 2001).

Conclusions

We here addressed the various possibilities how chemokine
expression by cancer cell clones may assist these clones for
growth, invasion and metastasis. This knowledge is superim-
posed on the original findings that tumor-associated leukocytes
may dampen tumor growth and invasion. Further conclusions can
be drawn by an analysis and comparison of the literature on in vivo
overexpression of chemokines in tumor models. First, beneficial
effects of tumor-specific chemokine overexpression predominate
for the host, if the immune system is activated by a second signal.
In other words, a therapeutic effect with reduced tumor growth,
invasion and metastasis is observed if, in addition to the chemokine

signal, the tumor itself or the used vector signal are immunogenic.
The effect may be spectacular with xenografted human tumors in
mouse systems. We caution that this is an artificial situation, since
most human cancers, even when producing chemokines, do not
necessarily provide this additional signal, because they often are
poorly immunogenic. The use of immune stimulation may help the
host to kill the tumor. Second, angiogenic chemokine expression
by tumors needs to be blocked, whereas angiostatic chemokines
are best enhanced. Various pharmacological ways to achieve
these goals are presently being investigated. Finally, chemokine-
induced proteases may be other targets for therapy. Since the
countercurrent model is mainly documented with neutrophil
chemokines (IL-8/CXCL8 in humans and GCP-2 in mice) and
these chemokines induce the release of mainly neutrophil pro-
teases (MMP-8, MMP-9 and neutrophil elastase), these enzymes
may in the future become good targets for pharmacological
inhibitors in invasive and metastatic cancers.
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