TY - JOUR TI - Myosin structure and thyroidian control of myosin synthesis in urodelan amphibian skeletal muscle. AU - Chanoine, C AU - Guyot-Lenfant, M AU - Saadi, A AU - Perasso, F AU - Salles-Mourlan, A M AU - Gallien, C L T2 - The International Journal of Developmental Biology AB - Electrophoretic analysis in non-dissociating conditions reveals three types of myosin in adult urodelan amphibian skeletal muscles: 3 isoforms of fast myosin (FM), one isoform of intermediate myosin (IM) and one or two isoforms of slow myosin (SM). Each type is characterized by a specific heavy chain HCf (FM), HCi (IM) and HCs (SM), respectively. In all urodelan species, as in mammals, fast isomyosins associate HCf and the three fast light chains LC1f, LC2f, and LC3f. In most urodelan species the intermediate myosin contains LC1f and LC2f and can be considered as an homodimer of the alkali LC1f. However, in Euproctus asper, IM is characterized by the association of both slow and fast LC with HCi. Slow myosin is a hybrid molecule associating HCs with slow and fast LC. During metamorphosis, a myosin isoenzymic transition occurs consisting in the replacement of three larval myosins (LM) characterized by a specific heavy chain (HCI), by the adult isomyosins with lower electrophoretic mobilities. At the same time there is a change in the ATPase myofibrillar pattern, with the larval fiber types being replaced by adult fibers of types I, IIA and IIB. In the neotenic and perennibranchiate species, which do not undergo spontaneous metamorphosis, sexually mature larval animals present a change in the myosin isoenzymic profile, but no complete transition. The coexistence of larval and adult isomyosins and the persistence of transitional fibers of type IIC in the skeletal muscle are demonstrated. Experimental hypo- and hyperthyroidism indicate that thyroid hormone stimulates the regression of the larval isomyosins, possibly through indirect pathways. In contrast, the appearance and the persistence of the adult isomyosins seem to be independent of thyroid hormone. Thus, the control of the isoenzymic transition in the skeletal muscle of urodelan amphibians appears to imply indirect mechanisms, operating differently on each of the two phases of the complete transition. PY - 1990 VL - 34 IS - 1 SP - 163 EP - 170 J2 - Int. J. Dev. Biol. LA - en SN - 0214-6282 SN - 1696-3547 UR - https://ijdb.ehu.eus/article/2144184 Y2 - 2025/01/05/06:04:14 ER -