TY - JOUR TI - The origins of axial patterning in the metazoa: how old is bilateral symmetry? AU - Finnerty, John R T2 - The International Journal of Developmental Biology AB - Bilateral symmetry is a hallmark of the Bilateria. It is achieved by the intersection of two orthogonal axes of polarity: the anterior-posterior (A-P) axis and the dorsal-ventral (D-V) axis. It is widely thought that bilateral symmetry evolved in the common ancestor of the Bilateria. However, it has long been known that members of the phylum Cnidaria, an outgroup to the Bilateria, also exhibit bilateral symmetry. Recent studies have examined the developmental expression of axial patterning genes in members of the phylum Cnidaria. Hox genes play a conserved role in patterning the A-P axis of bilaterians. Hox genes are expressed in staggered axial domains along the oral-aboral axis of cnidarians, suggesting that Hox patterning of the primary body axis was already present in the cnidarian-bilaterian ancestor. Dpp plays a conserved role patterning the D-V axis of bilaterians. Asymmetric expression of dpp about the directive axis of cnidarians implies that this patterning system is similarly ancient. Taken together, these result imply that bilateral symmetry had already evolved before the Cnidaria diverged from the Bilateria. PY - 2003 VL - 47 IS - 7-8 SP - 523 EP - 529 J2 - Int. J. Dev. Biol. LA - en SN - 0214-6282 SN - 1696-3547 UR - https://ijdb.ehu.eus/article/14756328 Y2 - 2024/11/05/17:20:52 ER -