TY - JOUR TI - The involvement of three signal transduction pathways in botryllid ascidian astogeny, as revealed by expression patterns of representative genes AU - Rosner, Amalia AU - Alfassi, Gilad AU - Moiseeva, Elizabeth AU - Paz, Guy AU - Rabinowitz, Claudette AU - Lapidot, Ziva AU - Douek, Jacob AU - Haim, Abraham AU - Rinkevich, Baruch T2 - The International Journal of Developmental Biology AB - The patterning of the modular body plan in colonial organisms is termed astogeny, as distinct from ontogeny, the development of an individual organism from embryo to adult. Evolutionarily conserved signaling pathways suggest shared roots and common uses for both ontogeny and astogeny. Botryllid ascidians, a widely dispersed group of colonial tunicates, exhibit an intricate modular life form, in which astogeny develops as weekly, highly synchronized growth/death cycles termed blastogenesis, abiding by a strictly regulated plan. In these organisms both astogeny and ontogeny form similar body structures. Working on Botryllus schlosseri, and choosing a representative gene from each of three key Signal Transduction Pathways (STPs: Wnt/β-catenin; TGF-β, MAPK/ERK), we explored and compared gene expression at different stages of ontogeny and blastogenesis. Protein expression was studied via immunohistochemistry, ELISA and Western blotting. Five specific inhibitors and an activator for the selected pathways were used and followed to assess their impact during the blastogenic cycle and the development of distinctive phenotypes. Outcomes show that STPs are activated and function (while not necessarily co-localized) during both ontogeny and astogeny. Cellular patterns in blastogenesis, such as colony architecture, are shaped by these STPs. These results are further supported by administering Wnt agonist and anatagonist, TGF-β receptor antagonists and inhibitors of Mek1/Mek2. Independent of their expression during ontogeny, some of the spatiotemporal patterns of STPs developed within short blastogenic windows. The results support the notion that while the same molecular machinery is functioning in Botryllus schlosseri astogeny and ontogeny, astogenic development is not an ontogenic replicate. PY - 2014 DO - 10.1387/ijdb.140114ar VL - 58 IS - 9 SP - 677 EP - 692 J2 - Int. J. Dev. Biol. LA - en SN - 0214-6282 SN - 1696-3547 UR - https://ijdb.ehu.eus/article/140114ar Y2 - 2025/01/03/04:23:54 ER -