TY - JOUR TI - Dual embryonic origin of the hyobranchial apparatus in the Mexican axolotl (Ambystoma mexicanum) AU - Davidian, Asya AU - Malashichev, Yegor T2 - The International Journal of Developmental Biology AB - Traditionally, the cartilaginous viscerocranium of vertebrates is considered as neural crest (NC)-derived. Morphological work carried out on amphibian embryos in the first half of the XX century suggested potentially mesodermal origin for some hyobranchial elements. Since then, the embryonic sources of the hyobranchial apparatus in amphibians has not been investigated due to lack of an appropriate long-term labelling system. We performed homotopic transplantations of neural folds along with the majority of cells of the presumptive NC, and/or fragments of the head lateral plate mesoderm (LPM) from transgenic GFP+ into white embryos. In these experiments, the NC-derived GFP+ cells contributed to all hyobranchial elements, except for basibranchial 2, whereas the grafting of GFP+ head mesoderm led to a reverse labelling result. The grafting of only the most ventral part of the head LPM resulted in marking of the basibranchial 2 and the heart myocardium, implying their origin from a common mesodermal region. This is the first evidence of contribution of LPM of the head to cranial elements in any vertebrate. If compared to fish, birds, and mammals, in which all branchial skeletal elements are NC-derived, the axolotl (probably this is true for all amphibians) demonstrates an evolutionary deviation, in which the head LPM replaces NC cells in a hyobranchial element. This implies that cells of different embryonic origin may have the same developmental program, leading to the formation of identical (homologous) elements of the skeleton. PY - 2013 DO - 10.1387/ijdb.130213ym VL - 57 IS - 11-12 SP - 821 EP - 828 J2 - Int. J. Dev. Biol. LA - en SN - 0214-6282 SN - 1696-3547 UR - https://ijdb.ehu.eus/article/130213ym Y2 - 2024/12/22/09:44:51 ER -